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Abstract—To reduce the impact of large-sized, high-rate (α)
transfers on real-time flows, a Hybrid Network Traffic Engi-
neering System (HNTES) was proposed in earlier work. HNTES
is an intra-domain solution that enables the automatic identifi-
cation of α flows at a provider network’s ingress routers, and
redirects these flows to traffic-engineered QoS-controlled virtual
circuits. The purpose of this work is to determine the best QoS
mechanisms for the virtual circuits used in this application. Our
findings are that a no-policing, two-queues solution with weighted
fair queueing and priority queueing is both sufficient and the
best for this application. It allows for the dual goals of reduced
delay/jitter in real-time flows, and high-throughput for the α

flows, to be met.
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I. INTRODUCTION

This paper is an extended version of a published conference

paper [1]. It describes a set of experiments that were conducted

to determine the best Quality-of-Service (QoS) mechanisms to

apply while redirecting large-sized high-rate flows to virtual

circuits within provider networks.

To move large datasets, scientists typically invest in high-

end computing systems that can source and sink data to/from

their disk systems at high speeds. These transfers are referred

to as α flows as they dominate other flows [2]. They also cause

increased burstiness, which in turn impacts delay-sensitive

real-time audio/video flows. In prior work [3], we proposed

an overall architecture for an intra-domain traffic engineering

system called Hybrid Network Traffic Engineering System

(HNTES) that performs two tasks: (i) analyzes NetFlow re-

ports offline to identify α flows, and (ii) configures the ingress

routers for future α-flow redirection to traffic-engineered

Quality-of-Service (QoS)-controlled paths. The prior paper [3]

then focused on the first aspect, and analyzed NetFlow data

obtained from live ESnet routers for the period May to Nov.

2011. The analysis showed that since α flows require high-

end computing systems to source/sink data at high speeds,

these systems are typically assigned static global public IP

addresses, and repeated α flows are observed between the

same pairs of hosts. Therefore, source and destination address

prefixes of observed α flows can be used to configure firewall

filter rules at ingress routers for future α-flow redirection. The

effectiveness of such an offline α-flow identification scheme

was evaluated with the collected NetFlow data and found to be

94%, i.e., a majority of bytes sent in bursts by α flows would

have been successfully isolated had such a traffic engineering

system been deployed [3].

The work presented here focuses on the second aspect

of HNTES by addressing the question of how to achieve

α-flow redirection and isolation to traffic-engineered paths.

Specifically, service providers such as ESnet [4] are interested

in actively selecting traffic-engineered paths for α-flows, and

using QoS mechanisms to isolate these flows. With virtual-

circuit technologies, such as MultiProtocol Label Switching

(MPLS), ESnet and other research and education network

providers, such as Internet2, GEANT [5], and JGN-X [6], offer

a dynamic circuit service. An On-Demand Secure Circuits

and Advance Reservation System (OSCARS) Inter-Domain

Controller (IDC) [7] is used for circuit scheduling and pro-

visioning.

The basic interface to the IDC requires an application to

specify the circuit rate, duration, start time, and the endpoints

in its advance-reservation request. The specified rate is used

both for (i) path computation in the call-admission/circuit-

scheduling phase and (ii) policing traffic in the data plane.

If the application requests a high rate for the circuit, the

request could be rejected by the OSCARS IDC due to a

lack of resources. On the other hand, if the request is for

a relatively low rate (such as 1 Gbps), then the policing

mechanism could become a limiting factor to the throughput

of α flows, preventing TCP from increasing its sending rate.

The purpose of this paper is to evaluate the effects of

different scheduling and policing mechanisms to achieve two

goals: (i) reduce delay and jitter of real-time sensitive flows

that share the same interfaces as α flows, and (ii) achieve high

throughput for α-flow transfers.

Our key findings are as follows: (i) With the current widely

deployed best-effort IP-routed service, which uses first-come-

first-serve (FCFS) packet scheduling on egress interfaces of

routers, the presence of an α flow can increase the delay and

jitter experienced by audio/video flows. (ii) This influence

can be eliminated by configuring two virtual queues at the

contending interface and redirecting identified α flows to

one queue (α queue), while all other flows are directed to

a second queue (β queue). (iii) The policer should not be



171

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

configured to direct out-of-profile packets of an α TCP flow

to a different queue from its in-profile packets. When packets

of the same TCP flow are served from different queues,

packets can arrive out of sequence at the receiver. Out-of-

sequence arrivals triggers TCP’s fast retransmit/fast recovery

congestion algorithm, which causes the TCP sender to lower

its sending rate resulting in degraded throughput. (iv) An

alternative approach to dealing with out-of-profile packets is to

probabilistically drop a few packets using Weighted Random

Early Detection (WRED), and to buffer the remaining out-of-

profile packets in the same queue as the in-profile packets. This

prevents the out-of-sequence problem and results in a smaller

drop in α-flow throughput when compared to the separate-

queues approach. (v) The no-policing scheme is preferred to

the policing/WRED scheme because HNTES redirects α flows

within a provider’s network, which means that these flows

will typically run TCP and are not rate-limited to the circuit

rate. If an end application requested a circuit explicitly, then

it can be expected to use traffic control mechanisms, such as

Linux tc, to limit the sending rate. But with HNTES, the

end application is not involved in the circuit setup phase, and

therefore the applications are likely to be running unfettered

TCP. Under these conditions, when buffer occupancy builds

up, packets will be deliberately dropped in the policing/WRED

scheme, leading to poor performance. Furthermore, if there are

two simultaneous α flows, the probability of buffer buildups

increases, which in turn increases the dropped-packet rate

and lowers throughput. This recommendation of using a no-

policing only scheme for α flows does not prevent the ap-

plication of other QoS mechanisms to real-time flows after

they have been separated out from α flows. (vi) The negatives

of partitioning rate/buffer space resources between two queues

were studied. Our conclusions are that close network monitor-

ing is required to dynamically adjust the rate/buffer space split

between the two queues as traffic changes, and the probability

of unidentified α flows should be reduced whenever possible

to avoid these flows from becoming directed to the β queue.

Section II provides background and reviews related work.

Section III describes the experiments we conducted on a

high-speed testbed to evaluate different combinations of QoS

mechanisms and parameter values to achieve our dual goals

of reduced delay/jitter for real-time flows and high throughput

for α flows. Our conclusions are presented in Section IV.

II. BACKGROUND AND RELATED WORK

The first three topics, historical perspective, a hybrid net-

work traffic engineering system, and QoS support in state-of-

the-art routers, provide the reader with relevant background

information. The last topic, QoS mechanisms applied to TCP

flows, covers related work.

Historical perspective: In the nineties, when Asynchronous

Transfer Mode (ATM) [8] and Integrated Services (IntServ)

[9] technologies were developed, virtual circuit (VC) services

were considered for delay-sensitive multimedia flows. How-

ever, these solutions are not scalable to large numbers of flows

because of the challenges in implementing QoS mechanisms

such as policing and scheduling on a per-flow basis. Instead,

a solution of overprovisioning connectionless IP networks

has been affordable so far. Overprovisioning prevents router-

buffer buildups and thus ensures low delay/jitter for real-time

audio/video flows. While this solution works well most of the

time, there are occasional periods when a single large dataset

transfer is able to ramp up to a very high rate and adversely

affect other traffic [10]. Such transfers, which are referred to

as α flows, occur when the amount of data being moved is

large, and the end-to-end sustained rate is high.

In the last ten years, there has been an emergent interest in

using VCs but for α-flow transfers not multimedia flows. As

noted in Section I, service providers are interested in routing

these α flows to traffic-engineered, QoS-controlled paths. The

scalability issue is less of a problem here since the number of

α flows is much smaller than of that of real-time audio-video

flows. It is interesting to observe this “flip” in the type of

applications being considered for virtual-circuit services, i.e.,

from real-time multimedia flows to file-transfer flows.

Hybrid Network Traffic Engineering System (HNTES):

Ideally if end-user applications such as GridFTP [11] alerted

the provider networks en route between the source and

destination before starting a high-rate, large-sized dataset

transfer, these networks could perform path-selection and

direct the resulting TCP flow(s) to traffic-engineered, QoS-

controlled paths. However, most end-user applications do not

have this capability, and furthermore inter-domain signaling

to establish such paths requires significant standardization

efforts. Meanwhile, providers have recognized that intra-

domain traffic-engineering is sufficient if α flows can be

automatically identified at the ingress routers. Deployment

of such a traffic-engineering system lies within the control

of individual provider networks, making it a more attractive

solution. Therefore, the first step in our work was to determine

whether such automatic α flow identification is feasible or not.

In our prior work [3], we started with a hypothesis that

computers capable of sourcing/sinking data at high rates are

typically allocated static public IP addresses, and α flows

between pairs of these computers occur repeatedly as the

same users initiate dataset transfers. This hypothesis was true

for ESnet traffic. Therefore, HNTES can determine source-

destination IP address prefixes by analyzing NetFlow reports

of completed α flows and use these address prefixes to set

firewall filters to redirect future α flows. Our heuristic was

simple: if a NetFlow report for a flow showed that more than

H bytes (set to 1 GB) were sent within a fixed time interval (set

to 1 min), we classified the flow as an α flow. This NetFlow

data analysis is envisioned to be carried out offline on say a

nightly basis for all ingress routers to update the firewall filters.

If no flows are observed for a particular source-destination

address prefix within an aging interval (set to 30 days), then

the firewall filter entry is removed. The effectiveness of this

scheme was evaluated through an analysis of 7 months of

NetFlow data obtained from an ESnet router. For this data set,
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94% (82%) of bytes generated by α flows in bursts would

have been identified correctly and isolated had /24 (/32) based

prefix IDs been used in the firewall filters.

QoS support in routers: Multiple policing, scheduling and

traffic shaping mechanisms have been implemented in today’s

routers. While new mechanisms such as Flow-Aware Net-

working (FAN) [12] are being developed, in this section, we

review the particular mechanisms used in ESnet routers, and

hence in our experiments. For scheduling, two mechanisms are

used: Weighted Fair Queueing (WFQ) and Priority Queueing

(PQ) [13]. With WFQ, multiple traffic classes are defined, and

corresponding virtual queues are created on egress interfaces.

Bandwidth can be strictly partitioned or shared among the

virtual queues. WFQ is combined with PQ as explained later.

On the ingress-side, policing is used to ensure that a flow

does not exceed its assigned rate (set by the IDC during call

admission). For example, in a single-rate two-color (token

bucket) scheme, the average rate (which is the rate specified

to the IDC in the circuit request) is set to equal the generation

rate of tokens, and a maximum burst-size is used to limit the

number of tokens in the bucket. The policer marks packets

as in-profile or out-of-profile. Three different actions can be

configured: (i) discard out-of-profile packets immediately, (ii)

classify out-of-profile packets as belonging to a Scavenger

Service (SS) class, and direct these packets to an SS

virtual queue, or (iii) drop out-of-profile packets according to

a WRED profile, but store remaining out-of-profile packets in

the same queue as in-profile packets. For example, the drop

rate for out-of-profile packets can be configured to increase

linearly from 0 to 100 for corresponding levels of queue

occupancy.

QoS mechanisms applied to TCP flows: Many QoS pro-

visioning algorithms that involve some form of active queue

management (AQM) have been studied [14]–[18]. Some of

the simpler algorithms have been implemented in today’s

routers, such as RED [14] and WRED [16], while other

algorithms, such as Approximate Fair Dropping (AFD) [18],

have been shown to provide better fairness. An analysis

of the configuration scripts used in core and edge routers

of ESnet shows that these AQM related algorithms are not

enabled. This is likely due to the commonly adopted policy

of overprovisioning (an Internet2 memorandum [19] states a

policy of operating links at 20% occupancy). Nevertheless,

providers have recognized that in spite of the headroom, an

occasional α flow can spike to a significant fraction of link

capacity (e.g., our GridFTP log analysis showed average flow

throughput of over 4 Gbps across 10-Gbps paths [10]). When

the flow throughput averaged across its lifetime is 4 Gbps,

there can be short intervals in which the flow rate spiked to

values close to link capacity.

III. EXPERIMENTS

A set of experiments were designed and executed to deter-

mine the best combination of QoS mechanisms with corre-

sponding parameter settings in order to achieve our dual goals

of reduced delay/jitter for real-time traffic and high throughput

for α flows. For the first goal, we formulated a hypothesis as

follows: a scheduling-only no-policing scheme that isolates

α-flow packets into a separate virtual queue is sufficient to

keep non-α flow delay/jitter low. For the second goal, we

experimented with different QoS mechanisms and parameter

settings.

Experiment 1 was designed to understand the two modes

for sharing link rate (strictly partitioned and work conversing),

and to determine the router buffer size. Experiment 2 tests the

above-stated hypothesis for the first goal. Experiments 3 and 4

studied two different mechanisms, using a separate scavenger-

service (SS) queue vs. using WRED, for handling the out-of-

profile packets identified by ingress-side policing, and com-

pared results with a no-policing approach. We concluded that

the WRED scheme was better, but it was outperformed by the

no-policing scheme. Experiment 5 was designed to check if

the policing/WRED scheme had a fairness advantage over the

no-policing scheme. We found that since neither of the two

policed α flows honored their assigned rates (which should be

expected for HNTES-redirected flows), under the no-policing

scheme the TCP flows adjusted their sending rates and had no

packet losses, while the deliberate packet losses introduced

in the policing/WRED scheme lowered throughput for both

flows, and furthermore resulted in lower fairness because of a

difference in RTTs, even though this difference was small.

In Experiment 6, we characterized the the impact of QoS

provisioning under changing traffic conditions, and compared

two versions of TCP: Reno and H-TCP. In the presence of

an α flow that uses up its whole α-queue rate allocation,

if the background traffic is more than the rate allocated to

the β queue, the latter will suffer from more losses than if

there had been no partitioning of resources between the two

queues. This implies a need for closer monitoring of traffic

and dynamic reconfiguration of the rate/buffer allocations to

the two queues. However, since two rare events, an α flow and

an increased background load, have to occur simultaneously,

the probability of this scenario is low. H-TCP is better than

Reno for high-speed transfers, but from the perspective of the

impact on other flows, we did not see a significant difference in

our tested scenarios. Experiment 7 was designed to study the

effects of an unidentified α flow being directed to the β queue.

Here again, if there was no simultaneous α flow directed to

the α queue when the unidentified α flow appeared, then the

impact will be the same as without partitioning. However, if

this combination of rare events occurs jointly, then given that

the β queue has only a partition of the total interface rate/buffer

space, the impact on delay-sensitive flows will be greater than

if there had been no partitioning.

Section III-A describes the experimental setup, the experi-

mental methodology, and certain router configurations that are

common to all the experiments. The remaining subsections

describe the seven experiments.
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Figure 1. Experiment setup.

A. Experimental setup

The experimental network setup is shown in Figure 1. It

was called the Long Island MAN (LIMAN) testbed, and was

supported by ESnet as a DOE-funded testbed for networking

research. The high-performance hosts, W1 (West 1), E1 (East

1), and E2 (East 2), were Intel Xeon Nehalem E5530 models

(2.4GHz CPU, 24GB memory) and ran Linux version 2.6.33.

The application hosts, WA (West App-host) and EA (East App-

host), were Intel Dual 2.5GHz Xeon model and ran Linux

2.6.18. The routers, WR (West Router) and ER (East Router),

were Juniper MX80’s running Junos version 10.2. The link

rates were 10 Gbps from the high-performance hosts to the

routers, 1 Gbps from the application hosts to the routers, and

10 Gbps between the routers.

Host W1 and router WR were physically located in New York

City, while the East-side hosts and routers, and host E2, were

physically located in the Brookhaven National Laboratory

(BNL) in Long Island, New York. Host E2 was connected to

router WR via a circuit provisioned across the Infinera systems

of the underlying optical network as shown in Figure 1.

Each experiment consists of four steps: (i) plan the ap-

plications required to test a particular QoS mechanism, (ii)

configure routers to execute the selected QoS mechanisms

with corresponding parameter settings based on the planned

application flows, (iii) execute applications on end hosts to

create different types of flows through the routers, and (iv)

obtain measurements for various characteristics, e.g., through-

put, packet loss, and delay, from the end-host applications as

well as from packet counters in the routers.

A preliminary set of experiments were conducted to deter-

mine the specific manner in which the egress-side link capacity

was shared among multiple virtual queues. Theoretically, the

transmitter can be strictly partitioned or shared in a work-

conserving manner. If strictly partitioned, then even if there

are no packets waiting in one virtual queue, the transmitter

will not serve packets waiting in another queue. In this mode,

each queue is served at the exact fractional rate assigned to

it. In contrast, in the work-conserving mode the transmitter

will serve additional packets from a virtual queue that is

experiencing a higher arrival rate than its assigned rate if there

are no packets to serve from the other virtual queues. The

buffer is always strictly partitioned between the virtual queues

in the routers used in our experiments.

Figure 2 illustrates how a combination of QoS mechanisms

was used in our experiments. First, incoming packets are

classified into multiple classes based on pre-configured firewall

filters, e.g., α-flow packets are identified by the source-

destination IP address prefixes and classified into the α class.

Second, packets in some of these classes are directly sent to

corresponding egress-side virtual queues, while flows corre-

sponding to other classes are subject to policing. A single-

rate token bucket scheme is applied. If an arriving packet

finds a token in the bucket, it is marked as being in-profile;

otherwise, it is marked as being out-of-profile. Third, for some

policed flows, in-profile and out-of-profile packets are sent to

separate egress-side virtual queues, while packets from other

policed flows are subject to WRED before being buffered in a

single virtual queue. On the egress-side, each virtual queue is

assigned a priority level, a fractional allocation (expressed as a

percentage) of link capacity, and a fractional allocation of the

Figure 2. Illustration of QoS mechanisms in a router.
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buffer. As noted in the previous paragraph the buffer allocation

is strictly partitioned while the transmitter is shared in work-

conserving mode. Fourth, the WFQ scheduler decides whether

a virtual “queue is in-profile or not,” by comparing the rate

allocated to the queue and the rate at which packets have been

served out of the queue. Finally, the PQ scheduler selects the

queue from which to serve packets using their assigned priority

levels, but to avoid starvation of low-priority queues, as soon

as a large enough number of packets are served from a high-

priority queue to cause the status of the queue to transition to

out-of-profile, the PQ scheduler switches to the next queue in

the priority ordering. When all queues become out-of-profile,

it starts serving packets again in priority order. It is interesting

that while the policer is flagging packets as in-profile or out-

of-profile on a per-flow basis, the WFQ scheduler is marking

queues as being in-profile or out-of-profile.

B. Experiment 1

1) Purpose and execution: The goals of this experiment

were to (i) determine the router buffer size, (ii) determine

the default mode used in the routers for link capacity (rate)

sharing (between the two options of strict partitioning and

work-conserving), and (iii) compare these two modes. Corre-

spondingly, three scenarios were tested with different router

configurations. To control rate and buffer allocations, the

router software required the configuration of a virtual queue

on the egress interface, even if it was just a single queue to

which all flows were directed. In scenario 1, by modifying the

buffer allocation for the virtual queue, router buffer size was

determined. In scenario 2, by modifying the rate allocation, the

default mode for capacity sharing was determined. Finally, in

scenario 3, the router was explicitly configured to operate in

the two different modes for comparison.

As per our execution methodology, the first step was to

plan applications. For the first two scenarios, we planned

to use two UDP flows created by the nuttcp application,

and a “ping” flow to send repeated echo-request messages

and receive responses. The purpose of the ping flow was to

measure round-trip delays. While other applications could be

used to emulate delay-sensitive flows, we chose a simple ping

flow as it was sufficient for our needs. The UDP flow was used

to fill up the router buffer. Only one UDP flow was required

for the third scenario. Hosts W1 and E2 were used to generate

the two UDP flows, both of which were destined to host E1.

Different hosts were used to achieve high transfer rates. The

ping flow sent messages from host WA to host EA. Therefore,

contention for buffer and bandwidth resources occurrred on

the link from router WR to router ER.

Our next step was to configure the routers. A single virtual

queue was configured on the output interface from WR to

ER, and all application flows were directed to this queue. In

scenario 1, the whole link capacity was assigned to the virtual

queue, but the buffer allocation was changed from 20% to

100%. In scenario 2, the assigned rate was varied from 1%

to 100%, while the buffer allocation was set to 100%, and in

scenario 3, the rate and buffer allocations were set to 20%,

and the capacity sharing mode was explicitly configured.

Next, we executed the experiments corresponding to the sce-

narios. For the first two scenarios, each nuttcp application

was initiated with the sending rate set to 7 Gbps, resulting in a

total incoming rate of 14 Gbps in order to fill up the buffer of

the 10 Gbps WR-to-ER interface. Due to the resulting packet

losses, nuttcp at the receiving host E1 reported rates of

approximately 5 Gbps for each UDP flow. In scenario 3, the

sending rate of the single UDP flow was set to 3 Gbps. This

was sufficient given the 20% rate allocation to the configured

virtual queue on the WR-to-ER link in this scenario. In all

three scenarios, the UDP flows and ping flow were run for 60

seconds.

Finally, for the first and third scenarios, round-trip time

(delay) measurements were obtained from the ping application

on the WA host. For the second scenario, router counters for

outgoing packets on the WR-to-ER link were read in order

to find the number of packets transmitted within 60 seconds

under different rate allocations.

2) Results and discussion:

Router buffer size: The ping packet delay measured in

scenario 1 is plotted against the ping packet number, which is

effectively the same as time, in Figure 3. With increasing time,

the ping delay increases gradually because the nuttcp UDP

packets start filling the buffer partition allocated to the virtual

queue on the WR-to-ER interface. The minimum ping delay

(2.1 ms) was observed when there were no UDP flows, i.e.,

there was no background traffic. The maximum delay (102

ms) was observed when the buffer allocation for the virtual

queue was 100%.

In the various plots of Figure 3, the buffer allocations for

the virtual queue are indicated. When the buffer allocation

was limited to 20%, the delay was only 22.2 ms, while when

the buffer allocation was set to 100%, the ping delay was

higher because the whole buffer had filled up. Recall that the

aggregate arrival rate of packets destined for the WR-to-ER link

was 14 Gbps, while the outgoing link rate was only 10 Gbps.

Based on these observations, the buffer size for the WR-to-

ER egress interface can be computed as follows:

10 Gbps× (102− 2.1) ms = 125 MB (1)

Default mode for link capacity sharing: From the experi-

ments conducted in Scenario 2, the router counters for the WR-

to-ER were recorded, and are shown in Table I. The reported

packets were almost the same for all values of the link capacity

allocation. Recall that the buffer allocation was set to 100%

for this scenario. In other words, even if only a 1% rate

was assigned to the virtual queue in which packets from all

three flows were held, the virtual queue was served at 100%

capacity. This result verifies that the default mode of operation

for the tested router is the work-conserving mode.

Comparison of the two rate sharing modes: Two rate

sharing strategies, strictly partitioned and work conserving,
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Figure 3. Experiment 1 scenario 1 results: Ping delay for different buffer
allocations (rate allocation was 100%).

Figure 4. Experiment 1 scenario 3: Results comparing the two rate sharing
modes (rate and buffer allocation was 20%).

were compared in Scenario 3. Figure 4 shows the ping

delay results under these two configurations. In the strictly

partitioned configuration, ping delays built up to 102 ms.

Recall that for scenario 3, the virtual queue rate and buffer

allocations were set to 20%, which was confirmed as follows:

R =
125 MB × 0.2

(102− 2.1) ms
= 2 Gbps (2)

Under the work-conserving configuration, ping delay was

only 2.1 ms (the round-trip time with no background traffic).

Recall that the UDP flow sending rate was 3 Gbps in this

scenario, while the rate allocation was only 2 Gbps. Yet there

was no queue buildup in the buffer, which means the egress

interface was served at a rate greater than 3 Gbps. Thus, in

the work-conserving mode, virtual queues that have packets

are served with excess capacity, if any.

C. Experiment 2

1) Purpose and execution: The goals of this experiment

were to (i) determine whether α flows have adverse effects on

real-time flows, and (ii) determine whether a scheduling-only

no-policing solution of α-flow isolation to a separate virtual

queue is sufficient to meet the first goal of keeping non-α flow

delay/jitter low.

The first step was to plan a set of applications. We decided

to use four nuttcp TCP flows and a ping flow. The TCP

version used was H-TCP [20] because it is the recommended

option to create high-speed (α) flows [21]. Two of the TCP

flows carried data from host E2 toward host W1, while the

other two TCP flows were from E1 to W1. The ping flow

was from EA to W1. Therefore, in this experiment, contention

for buffer and bandwidth resources occurred on the link from

router WR to host W1. Although the high-performance host

W1 was the common receiver for all flows, there was no

contention for CPU resources at W1 because the operating

system automatically scheduled the five receiving processes

to different cores.

The second step was to configure the routers. For compari-

son purposes, this experiment required two configurations: (i)

1-queue: a single virtual queue was defined on the egress

interface from WR to W1, and all flows were directed to this

queue, and (ii) 2-queues: two virtual queues (α queue and

β queue) were configured on the egress interface from WR to

W1, and WFQ scheduling was enabled with the following rate

(and buffer) allocations: 95% for α queue and 5% for β queue.

The priority levels of the α and β virtual queues were set to

medium-high and medium-low, respectively. In the 2-queues

configuration, two additional steps were required. A firewall

filter was created in router WR to identify packets from TCP

(α) flows using their source and destination IP addresses. A

TABLE I. EXPERIMENT 1 SCENARIO 2: PACKET COUNTER VALUES OBSERVED AT ROUTER WR FOR ITS WR-TO-ER INTERFACE.

Link rate allocation 1% 20% 40% 60% 80% 100%

Number of packets transmitted on

the WR-to-ER link 51924370 51536097 52755553 52669911 52786301 52637553
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Figure 5. Experiment 2: Top graph shows the delays experienced in the ping
flow under 1-queue and 2-queues configurations; bottom graph shows the
aggregate TCP flow throughput.

class-of-service configuration command was used to classify

these packets as belonging to the α class and to direct packets

from these flows to the α queue on the egress interface from

WR to W1. By default, all other packets were directed to the

β queue, which means that packets from the ping flow were

sent to the β queue.

In the third step, the applications were executed as follows.

The four TCP flow execution intervals were: (0, 200), (20,

160), (40, 140), and (60, 120), respectively, while the ping

flow was executed from 0 to 200 seconds.

Finally, throughput measurements as reported by each

nuttcp sender were collected, as were the delays reported

by the ping application.

2) Results and discussion: The top graph in Figure 5

illustrates that the scheduling-only no-policing solution of

configuring two virtual queues on the shared egress interface

and separating out the α flows into their own virtual queue

leads to reduced packet delay/jitter for the β flow. In the 1-

queue configuration, the mean ping delay was 60.4 ms, and

the standard deviation was 29.3 ms, while in the 2-queues

configuration, the mean ping delay was only 2.3 ms, with a

standard deviation of 0.3 ms.

In the 2-queues case, since the rate of the ping flow was

much lower than the 5% allocated rate for the β queue, the β

queue was in-profile, and hence the ping-application packets

were served immediately without incurring any queueing

delays.

The bottom graph in Figure 5 shows the aggregate through-

put of the four TCP flows. A comparison of this throughput

graph with the top ping-delay graph shows the following:

(i) when the aggregate TCP throughput increased from 9.4

Gbps to 10.7 Gbps at time 22, and the ping delay increased

from 3 ms to 82 ms. The nuttcp application reports average

throughput on a per-sec basis. Therefore, while the total

instantaneous throughput cannot exceed 10 Gbps (link rate),

the sum of the per-sec average throughput values for the

four TCP flows sometimes exceeds 10 Gbps, (ii) when the

aggregate TCP throughput dropped from 10.6 Gbps to 9.3

Gbps at time 49, the ping delay dropped from 92 ms to 22

ms, correspondingly, and (ii) throughput drops at 85, 121, 141,

and 161 sec coincided with ping-delay drops.

D. Experiment 3

1) Purpose and execution: The goals of this experiment

were to (i) compare a 2-queues configuration (scheduling-only,

no-policing) with a 3-queues configuration (scheduling and

policing), and (ii) compare multiple 3-queues configurations

with different parameter settings.

As per our execution methodology, the first step was to plan

applications. To study the behavior of the QoS mechanisms,

one nuttcp TCP flow and one nuttcp UDP flow (back-

ground traffic) were planned. The UDP flow carried data from

host E2 toward host W1, while the TCP flow was from E1 to

W1. Contention for buffer and bandwidth resources occurred

on the link from router WR to host W1.

In the second step, the router WR was configured with the

following QoS mechanisms. The 2-queues configuration was

the same as in Experiment 2 (no-policing), except that both

queues were given equal weight in sharing the rate and buffer

(50% each). For the 3-queues configurations, the allocations

for the three queues (α, β, and SS) to which in-profile TCP-

flow packets, UDP and ping packets, and out-of-profile TCP-

flow packets, were directed, respectively, are shown in Table II.

The priority levels of these three virtual queues were medium-

high, medium-low, and low respectively. The policer was

configured to direct in-profile TCP-flow packets (≤ 1 Gbps

and burst-size ≤ 31 KB) to the α queue, and out-of-profile

packets to the SS queue.

In the third step, experiment execution, the UDP flow rate

was varied from 0 Gbps to 3 Gbps in a particular on-off pattern

as shown in the top graph of Figure 6, and the TCP flow was

executed for the whole 200 sec. Finally, the same performance

metrics were collected as in Experiment 2.

2) Results and discussion: Figure 6 shows the TCP

throughput under the four configurations (one 2-queues and

three 3-queues) for different rates of the background UDP

flow. When the UDP flow rate was non-zero, since some

of the plots overlap, we have summarized the mean TCP-

flow throughput in Table II. When there was no background

UDP traffic, the throughput of the TCP flow was around 9.1

Gbps for all four configurations as seen in the first row of

Table II. As the background traffic load was increased, the

throughput of the TCP flow in all the 3-queues configurations

dropped more rapidly than in the 2-queues configuration, e.g.,

when the background UDP-flow rate was 3 Gbps, the TCP

throughput was in the 300-610 Mbps range for the 3-queues
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Figure 6. Experiment 3: The x-axis is time measured in seconds; the top graph
shows the on-off mode in which the UDP rate was varied; the lower graph
shows the TCP flow throughput under the four configurations.

TABLE II. EXPERIMENT 3: α-FLOW THROUGHPUT UNDER DIFFER-
ENT BACKGROUND LOADS (UDP RATE) AND QOS CONFIGURA-
TIONS.

UDP

rate

α-flow throughput (Gbps)

(Gbps) Percentages for 2-queues (α, β) and

3-queues (α, β, SS) configurations

(50,50) (49,50,1) (30,50,20) (10,30,60)

0 9.12 9.09 9.07 9.12

0.5 8.92 6.62 6.06 6.83

1 8.43 5.22 5 2.12

1.5 7.94 3.78 3.67 2.82

2 7.44 2.7 1.93 0.92

2.5 6.95 0.33 1.38 0.69

3 6.46 0.34 0.38 0.61

configurations, while the TCP throughput was 6.5 Gbps for

the 2-queues scenario (see last row of Table II).

In addition to explaining the first and last rows of Table II,

we provide an explanation for the drop in TCP-flow throughput

in the last column of the row corresponding to UDP rate of 1

Gbps, which highlights the importance of choosing the WFQ

allocations carefully.

Explanation for the first row of Table II: The explanation for

the TCP-flow throughput when there was no background traffic

is straightforward in the 2-queues configuration. As there were

no packets to be served from the β queue and the transmitter

was operating in a working-conserving manner, the β queue’s

50% allocation was used instead to serve the α queue, and

correspondingly the TCP flow enjoyed the full link capacity.

The explanation for the TCP-flow throughput values ob-

served in the 3-queues configurations requires an understand-

ing of the packet arrival pattern to the policer (see Figure 2)

and the rate at which packets leave the policer. When TCP-

flow throughput was almost the line rate (over 9 Gbps), then

the rate at which in-profile packets left the policer was almost

constant at 1 Gbps. This is because the token generation rate

was 1 Gbps and packet inter-arrival times were too short for a

significant collection of tokens in the bucket. Therefore, in an

almost periodic manner, every tenth packet of the TCP flow

was marked as being in-profile and sent to the α queue and the

remaining 9 packets were classified as out-of-profile and sent

to the SS queue. Given that in all the 3-queues configurations,

the α queue was assigned at least 10% of the link rate/buffer

space, the WFQ scheduler determined that the α queue was

in-profile, and the PQ scheduler systematically served 1 packet

from the α queue followed by 9 packets from the SS queue

thus preserving the sequence of the TCP-flow packets. In the

(49,50,1) configuration, 9 packets were served out of the SS

queue in sequence even though the queue was out-of-profile

after the first packet was served. This is because there were

no packets in the β queue and none in the α queue given

the policer’s almost-periodic direction of 1-in-10 packets to

this queue. Since no packets were out-of-sequence or lost, the

TCP-flow throughput remained high at above 9 Gbps in all

the 3-queues configurations.

Explanation for the last row of Table II: When there was

background nuttcp UDP traffic at 3 Gbps, in the 2-queues

configuration, it is easy to understand that the nuttcp TCP

flow was able to use up most of the remaining bandwidth,

which is the line rate minus the rate of background nuttcp

UDP flow, and hence the TCP-flow throughput was about 6.5

Gbps.

The explanation for the low nuttcp TCP throughput in the

3-queues configurations is that the opposite of the systematic

behavior explained above for the first row occurred here. When

the incoming packet rate to the policer was lower than the

line rate, the token bucket had an opportunity to collect a

few tokens. Therefore, when TCP-flow packets arrived at the

policer, a burst of them was classified as in-profile (since for

every token present in the bucket, one packet is regarded as

being in-profile), and sent to the α queue. These were served

in sequence, but because the transmitter had to serve the β

queue (for the UDP flow), the pattern in which the policer

sent packets to the α queue and SS queue is unpredictable and

involved bursts. This resulted in TCP segments arriving out-

of-sequence at the receiver (as confirmed with tcpdump and

tcptrace analyses presented in the next section). Out-of-

sequence arrivals trigger TCP’s Fast retransmit/Fast recovery

algorithm, which causes the sender’s congestion window to

halve resulting in lower throughput.

Explanation for the last-column entry in the row corre-

sponding to 1 Gbps in Table II: The TCP-flow throughput

dropped much faster from 6+ Gbps to 2.12 Gbps when UDP

rate increased from 0.5 to 1 Gbps in the (10,30,60) 3-queues
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TABLE III. EXPERIMENT 4: QOS CONFIGURATIONS; OOP: OUT-OF-
PROFILE.

WFQ allocation

Configuration Policing 2-queues:(α,β) WRED

3-queues:(α,β,SS)

2-queues None (60,40) NA

3-queues + OOP to

policing1 SS queue (59,40,1) NA

3-queues + OOP to

policing2 SS queue (20,40,40) NA

2-queues +

policing + Drop prob. =

WRED WRED (60,40) queue occ.

configuration than in the other two 3-queues configurations.

This is explained using the above-stated reasoning that when

the TCP-flow packets do not arrive at close to the line rate,

the inter-packet arrival gaps allow the token bucket to collect

a few tokens, making the policer send bursts of packets to the

α queue. In this (10,30,60) configuration, after serving only

one packet from each burst, the WFQ scheduler found the α

queue to be out-of-profile since its allocation was only 10%

or equivalently 1 Gbps. This led to a greater number of out-

of-sequence arrivals at the TCP receiver than in the other two

3-queues configurations, and hence lower throughput.

In summary, the higher the background traffic load, the

lower the nuttcp TCP-flow packet arrival rate to the policer,

the larger the inter-arrival gaps, the higher the number of

collected tokens in the bucket, and the larger the number of in-

profile packets directed to the α queue. If the WFQ allocation

to the α queue is insufficient to serve in-profile bursts, packets

from the α queue and SS queue will be intermingled resulting

in out-of-sequence packets at the receiver. This fine point

notwithstanding, the option of directing out-of-profile packets

from the policer to a separate queue appears to be detrimental

to α-flow throughput. We conclude that the second goal of high

α-flow throughput cannot be met with this policing approach.

In the next experiment, a different mechanism for dealing with

out-of-profile packets was tested.

E. Experiment 4

1) Purpose and execution: The goal of this experiment was

to compare the approach of applying WRED to out-of-profile

packets rather than redirecting these packets to a scavenger-

service queue as in Experiment 3. The planned applications

were the same as in Experiment 3, i.e., to generate one

nuttcp TCP flow and one nuttcp UDP flow.

The next step was router configuration. Four configurations

are compared as shown in Table III. In the fourth option,

Out-of-Profile (OOP) packets are dropped probabilistically at

the same rate as the fraction of α-queue occupancy. In other

words, if the α queue has 50% occupancy, then 50% of the

OOP packets are dropped on average. The policing rate and

burst size settings were the same as in Experiment 3.

Both the TCP and UDP flows were executed for 200 sec,

Figure 7. Experiment 4: The x-axis is time measured in seconds; the top graph
shows the on-off mode in which the UDP rate was varied; the lower graph
shows the TCP flow throughput under the four configurations.

but unlike in Experiment 3, the rate of the UDP flow was

maintained unchanged at 3 Gbps for the whole time period.

Finally, in addition to the previously used methods of obtaining

throughput reports from nuttcp, two packet analysis tools,

tcpdump and tcptrace, were used to determine the num-

ber of out-of-sequence packets at the receiver. Additionally, to

find the number of lost packets, a counter was read at router

WR for the WR-to-W1 link before and after each application

run.

2) Results and discussion: The lower graph in Figure 7 and

Table IV show that the TCP-flow throughput is highest in the

2-queues (no-policing) scenario, with the WRED option close

behind. The policing with WRED option performs much better

than the options in which out-of-profile (OOP) packets are

directed to an SS queue. In the WRED-enabled configuration,

the TCP flow experiences a small rate of random packet loss,

as shown in Table IV, while in 3-queues configurations, there

were much higher numbers of out-of-sequence packets. The

out-of-sequence packets in the WRED-enabled configuration

result from the 15 lost packets, and are not independent events.

Surprisingly, even though the number of out-of-sequence

packets was larger for the 3-queues+policing1 con-

figuration, the throughput was higher in that configuration.

This implies that fewer number of the out-of-sequence packets

caused triple-duplicate ACKs in the first case. But this pattern

is likely to change for repeated executions of the experiment.

Finally, Figure 7 shows that in the 2-queues (no-policing)

configuration, there was degradation of throughput soon after

the flow started. Also, Table IV shows a loss of 5050 pack-

ets (the 4076 out-of-sequence packets were related to these
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TABLE IV. EXPERIMENT 4: NUMBER OF OUT-OF-SEQUENCE PACKETS AND LOST PACKETS FOR DIFFERENT QOS SETTINGS.

Measure 2-queues 3-queues+ 3-queues+ 2-queues+

policing1 policing2 policing+wred

Average throughput 6 Gbps 0.92 Gbps 0.47 Gbps 5.6 Gbps

Num. of out-of-sequence

packets at the receiver 4076 8812 7199 15

Num. of lost packets at

the WR-to-W1 router link 5050 0 0 15

losses). Using tcptrace, we found that these losses occurred

at the start of the transfer. This is explained by the aggressive

growth of the congestion window (cwnd) in H-TCP, which

uses a short throughput probing phase at the start. During the

1st second, the throughput of the TCP flow averaged 5.7 Gbps.

The 5050 lost packets occurred in the 2nd second. These losses

occurred in the WR router buffer on its egress link from WR

to W1. If H-TCP increased its cwnd to a large enough value

to send packets at an instantaneous rate higher than 7 Gbps,

then given the presence of the UDP flow at 3 Gbps, the α

queue would fill up. From Experiment 1, we determined that

the particular router used as WR has a 125 MB buffer. Since

the buffer is shared between the α and β queues in a strictly

partitioned mode with the 60-40 allocation, the α queue has

75 MB, which means that if the H-TCP sender exceeds the 7

Gbps rate by even 600 Mbps, the α queue will fill up within

a second. Inspite of this initial packet loss, the 2-queues

no-policing configuration achieves the highest throughput. In

the next experiment, we consider the question of whether the

use of policing and WRED has a fairness advantage when

multiple α flows share a queue.

F. Experiment 5

1) Purpose and execution: The goal of this experi-

ment was to understand how two α flows compete for

bandwidth under different 2-queues configurations: with-

out policing (2-queues), and with policing and WRED

(2-queues+policing+WRED). In a first scenario, the α

flows had similar round-trip times (RTTs), while in a sec-

ond scenario, the RTTs differed significantly. We expected a

fairness advantage for the policing/WRED scheme, but found

the opposite. This is because neither of the two policed α

flows honored their assigned rates, and while under the no-

policing scheme the TCP flows adjusted their sending rates

and had no packet losses, the deliberate packet losses in

the policing/WRED scheme lowered throughput and resulted

in a lower fairness. Thus, the no-policing configuration out-

performs the configuration with policing and WRED from

both throughput and fairness considerations when neither flow

honors the policed rate.

The first step was to choose applications. Two nuttcp TCP

flows were planned. The first TCP flow (TCP1) was from host

E2 to host W1, and the second TCP flow (TCP2) was from

host E1 to host W1. The RTTs were similar but not exactly

the same. The RTT was 1.98 ms on the E2-to-W1 path and

2.23 ms on the E1-to-W1 path, because the latter path passes

through an additional router, ER.

The router configurations were as follows. In the

2-queues configuration, packets from both TCP flows were

directed to an α queue, with the rate and buffer allocations

set to (60,40) for the α and β queues, respectively. In the

2-queues+policing+WRED configuration, the policing

rate/burst size settings were the same as in Experiment 3, and

Out-of-Profile (OOP) packets were dropped probabilistically

with the same settings as in Experiment 4 ([0,100] drop

probability corresponding to [0,100] buffer occupancy.

TCP1 and TCP2 execution intervals were (0, 200) and (51,

151), respectively. In the different-RTTs scenario, the RTT of

TCP2 was increased by 50 ms using tc. Finally, through-

put and retransmission data were collected every second by

nuttcp at the senders.

2) Results and discussion: Experimental results are pre-

sented for the similar-RTT and different-RTTs scenarios.

Similar-RTT scenario:

Figure 8 shows the throughput of the two TCP flows when

they compete for the bandwidth and buffer resources of the

α queue. In the 2-queues configuration, the throughput of

TCP1 was approximately 9.4 Gbps for the first 50 seconds,

but dropped to 7.1 Gbps at t = 51, since TCP2 was initiated

then. In the 52nd second, both flows suffered packet losses,

with TCP1 requiring 2418 retransmissions and TCP2 requiring

3818 retransmissions. Since the sum of the rates of the flows

exceeded 10 Gbps, it caused losses and retransmissions in

the 52nd sec. After the 52nd second, there were no retrans-

missions on either flow. The per-second throughput recorded

by nuttcp, from t = 51 to t = 151 during which both

TCP flows were active, is shown in Figure 9. As the buffer

filled up and queueing delays increased, TCP acknowledg-

ments (ACKs) would have been delayed causing RTT for

TCP1 to increase. This decreased the effective sending rate

(cwnd/RTT). No losses occurred in the rest of the experiment

because as sending rates increased in one or both flows, the

buffer filled up delaying packets, and hence increasing RTT,

which in turn caused the sending rate to drop thus reducing

buffer buildups. This oscillatory behavior can be observed in

the throughput sum plot of Figure 9. The higher rate of TCP1

could be because of the slightly lower RTT for this flow when
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Figure 8. Experiment 5: Throughput of two TCP flows under two QoS
configurations (similar RTTs).

Figure 9. Experiment 5: Throughput of two TCP flows, and their total
throughput in the 2-queues configuration (similar RTTs).

compared to that of TCP2.

TABLE V. EXPERIMENT 5: RETRANSMISSIONS AND THROUGHPUT
OF 2 TCP FLOWS FOR THE POLICING/WRED CONFIGURATION (SIM-
ILAR RTTs).

Time (s) TCP Retrans- Throughput (Gbps)

missions Min Median Max

TCP1 227 2.56 4.84 6.31

51 - 53 TCP2 32 0.46 0.5 1.03

TCP1 14 4.35 7.37 8.98

54 - 69 TCP2 0 0.47 1.78 4.98

TCP1 65 4.26 6.91 8.47

70 - 151 TCP2 3 1.02 2.26 4.26

Next, consider the throughput values of TCP1 and TCP2

in the 2-queues+policing+WRED configuration shown

in Figure 8. From t = 51, TCP1 suffered losses and its

throughput dropped steadily until it reached 4.35 Gbps, while

TCP2 throughput kept increasing until it reached 4.98 Gbps at

t = 69. The reason why TCP1 throughput dropped is because

of the policing limit of 1 Gbps. Packets exceeding this rate

were marked as out-of-profile. Since TCP1 rate was 9.4 Gbps

at t = 50 just before TCP2 was started, its sending rate was

well above the policing rate of 1 Gbps. Subsequent to reaching

this almost balanced throughput level at t = 69, losses, and

hence retransmissions, were observed on both flows, but there

were more losses in TCP1 (see Table V) because its rate was

higher.

The key difference between the 2-queues and

2-queues+policing+WRED configurations is that

there were no losses in the former configuration after

t = 53, while in the latter configuration both flows kept

experiencing packet losses. This is because in the second

configuration, as both flows exceeded the policing limit of

1 Gbps, a few packets were marked as out-of-profile in

both flows. Recall that under WRED packets are dropped

probabilistically at a rate equal to buffer occupancy, and since

the buffer will sometimes have packets, losses are inevitable

in the 2-queues+policing+WRED configuration. When

losses occurred under the 2-queues+policing+WRED

configuration, the slight edge in RTT for TCP1 may account

for its higher throughput when compared to TCP2. TCP1

maintained an average rate of 6.86 Gbps from t = 70 to

t = 151 when TCP2 was terminated, at which point TCP1

recovered its rate to 9.4 Gbps. The TCP2 average throughput

from t = 70 to t = 151 was smaller at 2.35 Gbps. A loss

detected with triple duplicate ACKs results in a halving of

cwnd, which is equivalent to halving the sending rate. TCP1

operated in a higher range of cwnd values when compared

to TCP2.

Using Jain’s fairness index [22],

f(x) =
(
∑

n

i=1
xi)

2

n·
∑

n

i=1
x2

i

xi ≥ 0 (3)

and average throughput values across the t = 51 to t = 151
time range, we computed the fairness values to be 0.97 and
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Figure 10. Experiment 5: Throughput of two TCP flows under two QoS
configurations (different RTTs).

0.8 for the 2-queues and 2-queues+policing+WRED

configurations, respectively. This does not imply that the

former is a more fair configuration; it is just that in this

experiment, given that both TCP flows did not honor the

policing limit, policing caused packet losses, and recovery

from packet losses was slower for the longer-RTT path even

if the RTT difference was small. Without policing, there were

no deliberate packet drops in the 2-queues configuration;

instead the TCP senders self-regulated their sending rates.

When the rates were high, buffer occupancy grew, but this

caused RTT to increase, which, in turn, caused a lower sending

rate.

In summary, this experiment showed that policing will result

in decreased throughput for TCP based α flows when two

or more such flows occur simultaneously. In Experiment 4,

policing with WRED did not impact throughput significantly

but there was only one TCP based α flow, unlike in this

experiment.

Different RTTs:

Figure 10 shows the throughput of the two TCP flows with

different RTTs. During the 100-second period when both TCP

flows were active, the throughput of the two TCP flows and

their total throughput are plotted in Figure 11. The throughput

of TCP1 dropped from 9.1 Gbps at t = 50 to 7.1 Gbps at t =
51, since TCP2 was initiated at time 50. In the 57th second,

when TCP2 built up its rate to 2.93 Gbps, which made the

sum of the rates exceed 10 Gbps, both flows suffered packet

losses, with TCP1 requiring 3315 retransmissions and TCP2

requiring 4118 retransmissions. After the 57th second, there

were no retransmissions on either flow. Since the RTT of TCP2

Figure 11. Experiment 5: Throughput of two TCP flows, and their total
throughput in the 2-queues configurations (different RTTs).

was increased by 50 ms, it took 6 sec to reach the time instant

when losses occurred unlike in the similar-RTT scenario in

which both flows experienced losses in 2 sec. In the second

after the losses, TCP1 recovered its throughput back to 9.38

Gbps, while TCP2 throughput decreased from 2.92 Gbps to

11 Mbps.

TABLE VI. EXPERIMENT 5: RETRANSMISSIONS AND THROUGHPUT
OF 2 TCP FLOWS FOR THE POLICING-WRED CONFIGURATION (DIF-
FERENT RTTs).

Time (s) TCP Retrans- Throughput (Gbps)

missions Min Median Max

TCP1 140 3.51 7.6 9.41

51 - 58 TCP2 1 0.003 0.086 0.54

TCP1 107 7.61 8.81 9.35

59 - 151 TCP2 4 0.056 0.42 0.98

Next, we repeated the experiments with the policing and

WRED configuration. The retransmissions and throughput of

the two TCP flows are shown in Table VI. TCP1 experi-

enced losses even after the initial set of losses unlike in

the 2-queues configuration. Consequently, TCP1’s average

throughput was lower in the 2-queues+policing+WRED

configuration (8.98 Gbps) than in the 2-queues configura-

tion (9.1 Gbps), while TCP2’s average throughput was higher

(0.43 Gbps vs 0.41 Gbps). Jain’s fairness index value for

throughput of the two TCP flows was comparable under the

two configurations (0.546 and 0.551 under the 2-queues and

2-queues+policing+WRED configurations, respectively).

The RTT difference was the dominant reason for the unfair
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TABLE VII. EXPERIMENT 6: UDP-FLOW LOSS RATE AND PING DELAY.

β queue UDP rate UDP flow average packet loss rate Average ping delay (ms)

rate and (Gbps) before, during, and after the TCP flow before, during, and after the TCP flow

buffer t ∈ (0-52) t ∈ (53-153) t ∈ (154-200) t ∈ (0-52) t ∈ (53-153) t ∈ (154-200)

allocation

20% 2 0 5.03% 0 2.25 103 2.26

30% 2 0 0 0 2.3 2.25 2.25

Reno 20% 3 0 39.33% 0 2.26 103 2.27

30% 3 0 4.57% 0 2.27 104 2.31

≥ 30% 2 or 3 0 0 0 2.26 2.26 2.26

20% 2 0 5.3% 0 2.27 103 2.27

30% 2 0 0 0 2.27 2.26 2.25

H-TCP 20% 3 0 39.3% 0 2.26 103 2.27

30% 3 0 4.67% 0 2.28 104 2.29

≥ 30% 2 or 3 0 0 0 2.26 2.27 2.27

treatment of TCP2, not the QoS configuration.

G. Experiment 6

1) Purpose and execution: The goals of this experiment

were to (i) identify the impact of QoS provisioning under

changing traffic conditions, and (ii) compare two versions

of TCP: Reno and H-TCP. In the first part, we studied the

effect of enabling QoS control, specifically, the 2-queues

configuration, on changing traffic patterns. For example, what

is the impact of background traffic increasing to 3 Gbps when

the β queue to which background traffic was directed was

allocated only 20% of the rate/buffer capacity on a 10 Gbps

link (based on previous traffic measurements). As α flows

occur infrequently, most of the time, service quality for the

background traffic would be unaffected, but if this surge in

background traffic occurred within the duration of an α flow,

there could potentially be higher losses and delays in the

background traffic than if QoS mechanisms had not been

enabled.

As mentioned in Section III-C, the TCP version used in our

experiments was H-TCP, the recommended option for high-

speed networks [21]. However, although computers dedicated

for high-speed transfers are likely to be configured to use H-

TCP, as the most widely used TCP version is still TCP Reno,

we undertook a comparative experiment.

Three applications were planned for this experiment: one

nuttcp TCP flow (from host E1 to W1), one nuttcp

UDP flow (from host E2 to W1) and one ping flow (from

host EA to W1). In the router configuration step, two queues

were configured: a β queue for the background UDP flow

and the ping flow, and an α queue for the TCP flow. The

rate/buffer allocation (the same percentage was used for both

resources) for the β queue was varied from 20% to 60% in

10% increments, and the allocations for the α queue were set

correspondingly. The applications were executed as follows:

UDP flow and ping flow in the time interval (0, 200), and the

TCP flow in the interval (53, 153). Two rates were used for

the UDP flow: 2 Gbps and 3 Gbps.

2) Results and discussion:

Goal 1: Table VII shows the UDP-flow loss rate and ping

delay under different rate/buffer allocations for the β queue

in the 2-queues configuration. Before the TCP flow was

initiated (the first 53 seconds) and after the TCP flow ends (the

last 47 seconds), even if the rate of the UDP flow exceeded

the allocated rate for the β queue (i.e., 20% allocation when

the UDP-flow rate was 3 Gbps), the UDP flow experienced no

losses, and the ping delay remained at around 2.26 ms, which

implies that there was no buffer buildup in the β queue. This

is because the transmitter was operating in work-conserving

mode, which allowed it to serve packets from the β queue as

the α queue was empty.

During the time interval (53-153) when the TCP flow was

active, with a 20% rate/buffer allocation for the β queue, a

2 Gbps UDP flow suffered a 5% packet-loss rate, and the

ping delay was 103 ms, which means the β queue was full.

When the UDP-flow rate was increased to 3 Gbps, while the

β-queue allocation was held at 20% (to model changing traffic

conditions), the UDP-flow packet loss rate increased to about

39%, and the ping delay remained at 103 ms. Such a significant

loss rate and increased packet delay would not have occurred

had separate QoS classes not been created and the buffer not

been divided. When the UDP-flow rate increased, the TCP-

flow rate would have decreased as it would also have suffered

losses. In the 2-queues configuration, the TCP flow suffered

no losses for both the combinations described above: 20% β

queue allocation with 2 Gbps UDP-flow rate, and the 20%-3

Gbps combination. This is because the TCP flow was directed

to the α queue, which had its own large (80%) buffer/rate

allocation.

Goal 2: The numbers in Table VII show that there was no dif-

ference between H-TCP and Reno with regards to the impact

of the TCP flow on the UDP and ping flows. Furthermore,

Table VIII shows that the TCP flow enjoyed the same rate for

most of its duration. When the background UDP-flow rate was

2 Gbps, the TCP-flow throughput was 7.45 Gbps, and when
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the UDP-flow rate was 3 Gbps, the TCP-flow throughput was

correspondingly lower at 6.45 Gbps, irrespective of β-queue

rate/buffer allocation. The only difference observed between

Reno and H-TCP was in the TCP-flow’s behavior in the first

few seconds as shown in Table IX. Recall the TCP flow was

started at t = 53. With Reno, the number of retransmissions

that occurred in the early seconds drops as the β-queue buffer

allocation was increased (and the α-queue size, to which

the TCP flow was directed, correspondingly decreased). With

smaller α-queue sizes, it appears that the TCP sender starts

reducing its sending rate sooner, and hence there were fewer

losses and retransmissions. We expected H-TCP to suffer more

losses in the initial few seconds as it is more aggressive in

increasing its sending window, but this was not observed. Both

adjusted their sending rates and experienced no losses after the

initial set of losses shown in Table IX.

TABLE VIII. EXPERIMENT 6: TCP-FLOW THROUGHPUT FOR MOST
OF THE DURATION.

Background TCP throughput

(UDP) rate Reno H-TCP

2 Gbps 7.45 Gbps 6.45 Gbps

3 Gbps 7.45 Gbps 6.45 Gbps

TABLE IX. EXPERIMENT 6: TCP-FLOW RETRANSMISSIONS IN ITS
FIRST FEW SECONDS (THE FLOW WAS STARTED AT t = 53).

UDP-flow β-queue rate/ Time Number of

rate buffer alloc. retx pkts

Reno

30% t = 54 6624

2 Gbps 40% t = 54 5811

50% t = 53 4327

60% t = 54 2645

30% t = 54 7673

3 Gbps 40% t = 54 6970

50% t = 53 5137

60% t = 54 3495

H-TCP

30% t = 54 6008

2 Gbps 40% t = 54&55 4322 & 298

50% t = 53 3825

60% t = 54 3966

30% NA 0

3 Gbps 40% t = 54 1423

50% NA 0

60% t = 54 3528

H. Experiment 7

1) Purpose and execution: As described in Section II,

HNTES uses an offline approach by analyzing NetFlow reports

of completed flows to determine source-destination addresses

of α flows, and then uses these addresses to configure firewall

Figure 12. Experiment 7: The impact of an unidentified α flow with and
without HNTES.

filters in ingress routers of a provider’s network to redirect

packets of future α flows to traffic-engineered QoS-controlled

paths. With this scheme, an α flow between a new source-

destination pair will not be identified as such until its NetFlow

reports are analyzed, which most likely will occur after the

flow completes. Such unidentified α flows will be directed to

the β queue in a 2-queues configuration. Since in such a

configuration, buffer resources are partitioned between the β

queue and α queue, the purpose of this experiment was to

study the impact of such unidentified α flows.

Three nuttcp flows were planned for this experiment: a

UDP flow from E2 to W1, TCP flow TCP1 from E2 to W1,

and a second TCP flow TCP2 from E1 to W1. In addition,

a ping flow was executed from from EA to W1. Two router

configurations were used in this experiment: (i) 1-queue: a

single virtual queue was defined on the egress interface from

WR to W1, and all flows were directed to this queue, and (ii)

2-queues: two virtual queues (α queue and β queue) were

configured on the egress interface from WR to W1, and WFQ

scheduling was enabled with the following rate (and buffer)

allocations: 60% for α queue and 40% for β queue.

The execution intervals of the flows, ping, UDP, TCP1,

and TCP2 were (0,200), (0, 200), (42, 101), and (22, 162),

respectively. The rate of the UDP flow was set to 3 Gbps.

We assumed TCP1 to be the unidentified α flow, which was

hence directed to the β queue, while TCP2 was assumed to

be an α flow from a previously seen source-destination pair,

and hence directed to the α queue. The ping and UDP flows

were directed to the β queue. Measurements were collected

from the nuttcp and ping applications.
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2) Results and discussion: The throughput of the two TCP

flows and the ping delays are shown in Figure 12. In the

1-queue configuration, during the 60 seconds when both

TCP flows were active, TCP1 throughput kept increasing to

4.16 Gbps, while TCP2 throughput kept decreasing from 6.5

Gbps to 2.26 Gbps. This is because the RTT was slightly lower

for TCP1 as discussed earlier.

In the 2-queues configuration, TCP1 throughput was only

1 Gbps. This is because the β queue allocation was 40% of

the link rate/buffer, of which 3 Gbps was used by the UDP

flow, and TCP2 was actively consuming the 60% allocation of

the α queue. The mean throughput of the new α flow (TCP1)

in the 1-queue case was 3.2 Gbps, while it was only 0.8

Gbps under the 2-queues configuration. In other words,

the presence of HNTES and the corresponding 2-queues

configuration had an adverse effect on the unidentified α flow,

though as shown in our prior work, most α-flow generating

source-destination pairs send repeated α flows [3].

TABLE X. EXPERIMENT 7: TCP-FLOW RETRANSMISSIONS AND
PING DELAYS.

(sec, no. of (sec, no. of) (sec, ping delay (ms))

TCP1 retx) TCP2 retx)

1-queue configuration

NA (23, 3267) (24, 2.25)

(50, 955) (50, 568) (50, 4.7)

2-queues configuration

NA (22, 8074) (22, 2.3)

(44, 1855) (44, 0) (44, 87.3)

(60, 7) (60, 0) (60, 30.2)

(82, 7) (82, 0) (83, 48.5)

Consider the impact of the unidentified α flow on the

ping flow. In the 1-queue configuration, the ping delay was

around 2.3 ms until TCP2 was initiated at t = 22, at which

instant the ping delay surged up to 65.9 ms as seen in Figure 12

because of the buffer build-up from TCP2 packets. Since H-

TCP is aggressive in increasing its sending rate, in its 2nd

second (t = 23), there were 3267 packet drops as shown in

Table X. With all these losses, ping delay correspondingly

dropped down to 2.25 ms at t = 24. However, the delay

quickly increased back to the 56 ms range peaking at 88.7 ms

at t = 49. As shown in Table X, it took a few seconds after

TCP1 was initiated for both TCP1 and TCP2 to experience

packet losses causing ping delay to drop back down to 4.7

ms at t = 50. Beyond this time instant, neither TCP flow

suffered losses with both adjusting their sending rates based

on received acknowledgments and ping delay peaked at 91.5

ms at t = 101 when TCP1 ended. The ping delay dropped to

34 ms and increased to 47.9 ms at which point it dropped to

2.3 ms at t = 162 when TCP2 ended.

In the 2-queues configuration, the ping delay stayed

around 2.3 ms even after TCP2 was initiated as seen in

Figure 12 (because TCP2 was directed to a different queue),

but increased to 87.3 ms when TCP1 was initiated at t = 43

(since TCP1 representing an unidentified α flow was directed

to the same queue as the ping flow). TCP2 suffered no losses

after the initial losses of 8074 packets in its first second. On the

other hand, TCP1 suffered losses not only in its first second

(1855 losses), but again at t = 60 and t = 82. During these

seconds, ping delay dropped correspondingly from 103 ms at

t = 59 to 30.2 ms at t = 60, and from 103 ms at t = 82
to 48.5 ms at t = 83. These results illustrate that the smaller

buffer allocation for the β queue can have a negative effect

on real-time flows when an unidentified α flow appears.

In summary, QoS partitioning does have negative effects

when mismatched with traffic as shown in Experiment 6,

and when α flows are undetected and hence handled by the

partition set aside for β flows. Nevertheless, the benefits of

QoS partitioning as illustrated in the first five experiments

outweigh these costs.

IV. CONCLUSIONS AND FUTURE WORK

To reduce the impact of large-sized, high-rate (α) transfers

on real-time flows, a Hybrid Network Traffic Engineering

System (HNTES) was proposed in earlier work. HNTES is

an intra-domain solution that enables the automatic identi-

fication of α flows at a provider network’s ingress routers,

and redirects these flows to traffic-engineered QoS-controlled

virtual circuits. The purpose of this work was to determine

the best QoS mechanisms for the virtual circuits used in this

application. Our findings are that a no-policing, two-queues

(one for α flows and one for β flows) solution with weighted

fair queueing and priority queueing is both sufficient and the

best for this application. It allows for the dual goals of reduced

delay/jitter in real-time flows, and high-throughput for the α

flows, to be met.

We studied two types of policing schemes for handling out-

of-profile packets: redirection to a (third) scavenger-service

(SS) queue and Weighted Random Early Detection (WRED)

in which out-of-profile packets are either dropped probabilis-

tically according to some profile or held in the same queue

as in-profile packets. The WRED scheme was better than the

SS-queue scheme because the latter caused out-of-sequence

arrivals at the receiver, which triggered TCP congestion control

mechanisms that led to lower throughput. However, the no-

policing solution was better than the policing/WRED solution

because in this application flows are not likely to honor

the circuit rates and therefore deliberate packet drops are

inevitable in the policing/WRED solution causing lowered

throughput. The negatives of partitioning rate/buffer space

resources between two queues were studied. Our conclusions

are that close network monitoring is required to dynamically

adjust the rate/buffer space split between the two queues as

traffic changes, and the probability of unidentified α flows

should be reduced whenever possible to avoid these flows from

becoming directed to the β queue.

As future work, we plan to develop theoretical and/or sim-

ulation models to characterize the impact of QoS provisioning

schemes on TCP throughput.
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