On-Demand Grid Application Tuning and Debugging with the NetL ogger
Activation Service

Dan Gunter, Brian L. Tierney, Craig E. Tull, Vibha Virmani
Lawrence Berkeley National Laboratory
{dkgunter,bltierney,cetull ,wirmani} @I bl.gov

Abstract

Typical Grid computing scenarios involve many
distributed hardware and software components. The more
components that areinvolved, the more likely it is that one
of them may fail. In order for Grid computing to succeed,
there must be a simple mechanism to determine which
component failed and why. Instrumentation of all Grid
applications and middleware is an important part of the
solution to this problem. However, it must be possible to
control and adapt the amount of instrumentation data
produced in order to not be flooded by this data. In this
paper we describe a scalable, high-performance
instrumentation activation mechanism that addresses this
problem.

1. Introduction

Grid monitoring is the measurement and publication of
the state of a Grid component at a particular point in time.
To be effective, monitoring must be “end-to-end”,
meaning that all components between the application
endpoints must be monitored. Thisincludes software (e.g.,
applications, services, middleware, operating systems),
end-host hardware (e.g., CPUs, disks, memory, network
interface), and networks (e.g., routers, switches, or
end-to-end paths).

Monitoring is required for a number of purposes,
including status checking, troubleshooting, performance
tuning, and debugging. For example, assume a Grid job
which normally takes 15 minutes to complete has been
running for two hours but has not yet completed.
Determining what, if anything, is wrong is difficult and
requires a great deal of monitoring data. Is the job still
running or did one of the software components crash? Is
the network congested? Is the CPU loaded? Is there a disk
problem? Was a software library containing abug installed
somewhere? Monitoring provides the information to help
track down the current status of the job and locate any
problems.

A complete end-to-end Grid monitoring system has
several components, including:

Instrumentation: Instrumentation is the process of
putting probes into software or hardware to measure the
state of a hardware component, such as a host, disk,
network, or a software component, such as operating
system, middleware, or application. These probes are often
called Sensors.

Monitoring Event Publication: Consumers of
monitoring event data need to locate appropriate
monitoring event providers. Standard schemas, publication
mechanisms, and access policies for monitoring event data
are required.

Event Archives: Archived monitoring event data is
critical for performance analysis and tuning, as well asfor
accounting. Historical data can be used to establish a
baseline upon which to compare current performance.

Sensor Management: As Grid environments become
bigger and more complex, there are more components to
monitor and manage, and the amount of monitoring data
produced by this effort can quickly become
overwhelming. Some components require constant
monitoring, while others only are monitored on demand. A
mechanism for activating sensors on demand is required.

In this paper we describe a Grid activation service
which is designed to address the problem of starting,
stopping, and changing the level of instrumentation datain
running Grid processes. This is done in a manner that is
completely transparent to the application. The activation
service is designed to work in a cluster environment, and
be efficient and scalable. The activation service aso
collects the instrumentation results, and forwards them to
all interested consumers of this data.

This activation service is built using components from
NetLogger [16] and pyGMA. pyGMA is our
implementation of the Globa Grid Forum Grid
Monitoring Architecture [15]. NetLogger is used to
instrument Grid applications and services, and includes
the ability to change the logging-level on the fly by

periodically examining a configuration file [7]. The
NetLogger binary data format provides an extremely
efficient, light-weight transport mechanism for the
monitoring data. pyGMA provides an easy to use,
SOAP-based framework for control messages. pyGMA
also provides a standard publish-subscribe API for Grid
monitoring event publication.

1.1 The Activation Service and Athena

An example application use-case for the Activation
Service is Athena. The Athena [1] object-oriented
framework is designed to provide a common infrastructure
and environment for simulation, filtering, reconstruction
and analysis applications for the current generation of high
energy physics experiments.

Consider the problem of developing, tuning, and
running the Atlas Athena Framework in a Grid
Environment. The first step is to insert instrumentation
code to ensure the program is operating as expected. This
can be done using an instrumentation package such as
NetL ogger, and instrumentation code should be added to
generate timestamped monitoring events before and after
any CPU intensive tasks, and before and after all disk and
network 1/O, asisexplained in [10].

Once the application is debugged and tested, it is ready
for production use. Other monitoring services now become
important. The level of instrumentation required for the
debugging scenario above can easily generate thousands of
monitoring events per second. Clearly one does not need
or want this level of monitoring activated all the time, so
some type of monitoring activation service is needed so
that auser can turn instrumentation on and off in arunning
service.

Next, it is useful to establish a performance baseline for
this service, and store this information in the monitoring
event archive. System information such as processor type
and speed, OS version, CPU load, disk load, and network
load data should be collected during the baseline test runs.
The monitoring event publication service is needed to
locate the sensors and initiate a subscription for the
resulting monitoring data. Several tests are then run,
sending complete application instrumentation (for clients,
servers, and middleware), host, and network monitoring
data to the archive. A more detailed example is given in
[9].

The components required for this scenario are shown in
Figure 1. Athenajobs are running on nodes of one or more
compute clusters. The user contacts a monitoring data
registry to obtain the location of the activation service that
is managing the instrumentation level and producing
monitoring data for these Athena jobs. The user requests
of the activation service that the instrumentation level be
increased from the default level (e.g., just error conditions)
to a higher level (e.g., full performance trace). The user

monitoring data

]

‘activate
and subscribe Archive

User Activation Service

A
lfarch activatj Tmoréi;gingT lactivate
Regist 7 2
B D Compute D
DD Clusters D
7 i [T a

Figure 1: Sample Use of Activation Service

then subscribes for the instrumentation data, telling the
activation service to send the data both to the monitoring
archive and back to the user. The activation service
collects the data from each of the cluster nodes, and
forwardsit to both the user and to the monitoring archive.

More details on each of these components are in
Section 4., below.

2. Related Work

There are many monitoring systems out there, such as
the Condor project's Hawkeye [8], which have
publish/subscribe interfaces and some sort of filtering
capabilities. However, these systems are not concerned
with application instrumentation, low thresholds for
intrusiveness, or mechanisms for instrumentation
activation mechanisms. Kernel instrumentation packages
such as MAGNET [5] are extremely efficient, but often
assume the data can be stored in memory until the
program exits, and also may require kernel modifications.
There ae aso automatic and semi-automatic
application-level instrumentation systems such as Paradyn
[11], which are efficient but have simple models for
delivering the results and often are specialized for a
particular programming model (e.g., paralel programming
codes). Although all these systems share some goals with
the activation service, none have the particular focus on
efficient, general -purpose application instrumentation in a
wide-area distributed setting.

The Open Grid Services Architecture (OGSA) [6]
incorporates at a fundamental level much of the
functionality required to implement a Grid monitoring
service. Any OGSA Grid service can have associated with
it arbitrary service data elements (SDES): named and typed
data objects that can be both queried and subscribed to by
other parties. The Open Grid Services Infrastructure
(OGSI) [18] specification provides specific behaviors for
the notification interface outlined in the OGSA.

3. Building Blocks for the Activation Service

The activation service is a higher-level Grid service
based on the underlying components of GMA and
NetL ogger, described in this section.

3.1 Grid Monitoring Architecture

In 1999 a working group was formed within the Global
Grid Forum with the goa of defining a scalable
architecture for Grid monitoring. This group has produced
both a set of requirements for Grid monitoring, and a
high-level specification for a Grid Monitoring
Architecture (GMA). The Activation Service's publication
interface is based upon this architecture.

In GMA, the basic unit of monitoring data is called an
event. An event is a named, timestamped, structure that
may contain one or more items of data. This data may
relate to one or more resources such as memory or
network usage, or be application-specific data like the
amount of time it took to multiply two matrices. The
component that makes the event data available is caled a
producer, and a component that requests or accepts event
data is called a consumer. A directory service (ak.a
registry) is used to publish what event data is available and
which producer to contact to request it.

A producer and consumer can be combined to make
what is called a producer/consumer pipe. This can be used
to filter or aggregate data. For example, a consumer might
collect event data from several producers, and then use that
data to generate a new derived event data type, which is
then made available to other consumers. More elaborate
filtering, forwarding, and caching behaviors could be
implemented by connecting multiple consumer/producer
pipes. The activation service described in this paper is an
example of a GMA producer/consumer pipe.

A number of groups are now developing monitoring
services based on the GMA architecture, such as R-GMA
[3] (Relational GMA, so-called becauseit uses arelational
model for all data) ReMoS [4], and TOPOMON [2].

The OGSA notification serviceisvery similar to GMA.
The OGSA interface specifies a notification source and
sink, which are very similar to aproducer and consumer in
the GMA. However the current OGSI specification does
not provide an unsubscribe operation, or specify a

subscription language, and the notification sink requires
that all messages be XML. Integration with alternate
transport methods for monitoring data such as NetL ogger
or BEEP [14] will require more support from the OGS
specification.

3.2 pyGMA

The pyGMA [13], for “Python GMA”, is our
implementation of the Grid Monitoring Architecture
(GMA) producer, consumer, and registry. It implements
Web-Services SOAP interfaces in Python, a high-level
object-oriented language. It uses SOAP to aid with
seriadization and deserialization of messages. Using the
pyGMA, only a small amount of Python code would be
needed to subscribe to a GMA producer (e.g. the
Activation Producer, described below) for events, directing
the results to be transported using NetLogger or query a
producer for one or more events (returned directly in
XML).

3.3 NetLogger

At Lawrence Berkeley National Lab we have developed
the NetLogger Toolkit [17], which is designed to facilitate
non-intrusive instrumentation of distributed computing
components. Using NetLogger, distributed application
components are modified to produce timestamped logs of
“interesting” events at al the critical points of the
distributed system. Events from each component are
correlated, which alows one to characterize the
performance of al aspects of the system and network in
detail.

The NetL ogger instrumentation library is very efficient
and easy to use. Using the binary format, NetLogger can
seriaize on the order of haf a million events per second
[16]. In order to instrument an application to produce
event logs, the application developer inserts cals to the
NetLogger API at all the critical points in the code, then
links the application with the NetLogger library. This
facility is currently availablein several languages: Java, C,
C++, Python, and Perl. The API has been kept as simple as
possible, while still providing automatic timestamping of
events and logging to either memory, alocal file, syslog, a
remote host. Sample Python NetLogger APl usage is
shown in Figure2. As is shown in this example,

done = 0
whi | e not done:

done = do_son®t hi ng(dat a, si ze)
log.write(0,"EVENT_END")

| og = netl ogger.open(“x-netlog://loghost.|bl.gov”,”w)

| og. write(0,"EVENT_START", " TEST. SI ZE=%l", si ze)
performthe task to be nonitored

Figure 2: Sample NetLogger Usage

“interesting” eventsin the code (such as /O or processing)
are typically wrapped with NetLogger write() cals that
generate user-defined start and end instrumentation events

The NetLogger ASCIlI format consists of a
whitespace-separated list of “field=value”’ pairs. Required
fields are DATE, HOST, PROG, NL.EVENT and LVL;
these can be followed by any number of user-defined
fields. Here is a sample NetLogger event:

DATE=20000330112320. 957943

HOST=dpssl. | bl . gov

PROG=t est Prog LVL=Usage

NL. EVNT=W i t eDat a

SEND. SZ=49332

This says that the program testProg on host

dpssl.Ibl.gov sent 49322 bytes of data on March 30, 2000,
11:23am (and some seconds). NetLogger can generate
XML formatted data as well. The NetLogger binary
format is much faster, but harder for third-party tools to
use. NetLogger includes tools for converting between the
XML, ASCII, and binary formats.

3.4 Grid Event Transport

Typically, instrumentation systems only address the
problem of extracting the data and writing it to memory or
local disk. In a Grid environment, it is just as important to
have a robust, efficient means for transporting the
instrumentation data beyond that “first hop”, to one or
more consumers, each of whom may be interested in a
different subset of the same instrumentation data A
transport to accomplish this needs to overcome severa
challenges. Opening connections across the WAN is
expensive, so the transport should be able to stream an
arbitrary amount of data across a network connection.
Temporary network or server failures in the Grid are the
rule, not the exception, so the transport must be reliable in
the face of, e.g., broken TCP connections. Because pauses
to write out instrumentation are rarely tolerable to the
application, data should be buffered beforeevery potentia
bottleneck (e.g., before anyWAN hop).

Finaly, delivering a different subset of the data to
different consumers requires applying filters on the data at
intermediate nodes. To make this feasible on a Grid scale,
we believe that the encoding rules and underlying data
model should be part of the transport. The encoding
offered should be efficient: the component being
monitored cannot be perturbed, and intermediaries should
be able to apply filters or analyze the data at close the rate
the data is generated. In order to help make the encoding
efficient, and also to simplify the task of creating and
processing the data, the data model should be smple (i.e.,
not relational or XML-Infoset). Our approach is similar to
that of the XML Metadata Integration Toolkit, (XMIT)
from Georgia Tech [19].

NetLogger has been designed to answer these
requirements of a Grid transport. It has the following
features:

» Efficient streaming. NetLogger improves streaming
efficiency by buffering all writes for up to 64K or 1
second (whichever comes first).

» Rdiability. The write API allows the user to spec-
ify a“backup” file. If aTCP connection fails, the
log datais saved to the backup and, optionally,
automatically sent over once that connection comes
back up again.

» Buffering. The Activation Service directs all log-
ging to local disk, and then reads from these disk
buffersin order to forward the datato consumers.

» Efficient encoding. NetLogger supports avery effi-
cient binary format, afairly efficient, readable
ASCII, format, and XML. The NetLogger API's
can transparently handle each format.

* Minimal datamodel. Each logged item, or “event”,
is atimestamped set of typed name/value pairs.

The restricted NetLogger data model and binary
encoding provide efficiency where it is needed; the
general-purpose GMA publication architecture with
XML-based SOAP messaging provides flexibility whereit
is needed. The cooperation of these technologies provides
ascalable foundation for the Activation Service.

4. Activation Service components

The Activation Service has three main components: the
Activation Node, the Activation Producer, the Activation
Manager. When multiple activation services are deployed,
a fourth component, the Registry, is aso needed. These
components are deployed as shown in Figure 3, with one
activation node per host, one activation producer and
manager per logica host group (e.g., a cluster), and only
one logical registry for, ideally, the whole Grid.
Distributed search technologies such as LDAR
peer-to-peer technologies, or reliable multicast could be
used to implement the Registry.

“The Grid”

Registry storage cluster

instrument, —
|

meta-scheduler

— Activation ~Activation
— _| Producer Manager
cluster] Activation Node
> =] -
~N application
(Storage
N Logical Host Group Host
nstrument ~ (eg., cluster)

Figure 3: Activation Service

4.1 Activation Node

The Activation Node is responsible for getting the
desired logging level from the Activation Manager and
communicating this level to the appropriate
NetL ogger-instrumented programs. It is also responsible
for forwarding the instrumentation and monitoring data
from these programs to the Activation Producer.

Applications that wish to be activated must use the
NetLogger trigger API, which causes NetLogger to
automatically periodically check a “trigger” file for
updatesto the logging level or destination. In addition, the
trigger APl will create a small file describing the
NetL oggerized application; the Activation Node scans for
these files in order to figure out which applications are
running on a host.

To get the user-specified logging level, the Activation
Node polls the Activation Manager using the pyGMA
“query” operation, matches the results with the list of
known NetL ogger-instrumented programs running on this
host, and modifies the NetLogger “trigger” file
accordingly. Although it would be possible for the
Activation Node to tell applications to log directly to the
Activation Producer, this may cause delays if the
Activation Producer becomes overloaded. Therefore, the
Activation Node always “triggers’ logging to a temporary
file on local disk, and forwards the monitoring data
asynchronously to the Activation Producer.

4.2 Activation Producer

The Activation Producer receives pyGMA
subscriptions from consumers. As mentioned above, it
also receives NetLogger instrumentation data from the
Activation Node. The main task of the Activation
Producer, then, is to match incoming instrumentation data
with the subscriptions. In order to do this efficiently, the
monitoring data is multiplexed, demultiplexed, and filtered
by a NetLogger “pipe’, part of the standard NetLogger
library. In addition to using the efficient NetLogger
encoding, by performing these functions inside the
NetLogger library we also minimize copying of the
monitoring data. Subscriptions are transformed into
NetLogger “filters’, which are added to the pipe, as
illustrated in Figure 4.

Rather than try to build or borrow an expressive but
complex filter language such as [12], we devised asimple
method that would handle the most common use cases.
NetL ogger filters operate on one item of monitoring data
at a time, testing to see if that item matches any single
expression. An expression is a list of (name, operator,
va ue) tuples. For example, aquery that matches al “ Start”
or “End” monitoring events for program “Athena’ at a
logging level less than or equal to two would be:

NL.EVNT="Start” and PROG="Athend” and LVL <=2
or

Input Subscriptions
Ty
NetLogge

Multiplex /
Demultiplex

Input Monitoring
Data Streams

/V

Figure 4: NetLogger “Pipe”

Outputs
to Consumers

filter B

ilter A

Activation Producer

NL.EVNT="End” and PROG="Athena’ and LVL <=2
This matches the NetLogger event:

NL. EVNT=St art HOST=127.0.0.1
PROG=At hena LVL=1

but does not match either of the NetLogger events:

NL. EVNT=M ddl e HOST=127.0.0.1
PROG=At hena LVL=1
NL. EVNT=End HOST=127.0.0.1
PROG=At hena LVL=3

Due to the simplicity of the filter language, the
implementation is straightforward and efficient. This is
important because filtering is used extensively by the
Activation Producer. Performance results for the
NetLogger filtering APl are shown in Section 5.2.

4.3 Activation Manager

The Activation Manager keeps track of the logging
level for a given NetL ogger-instrumented application. If
the application is logging at level 3, then only log
messages of level 0 through 3 will be produced; alogging
level of -1 means “off”. NetLogger instrumentation
associates a log level with each piece of monitoring data,
SO an attempt to write monitoring data whose level is
above the current logging level results in a no-op. This
means that reducing the logging level is an easy and
efficient way to reduce the overhead of instrumentation.

The Activation Manager is polled periodically by each
Activation Node for its current list of “activations’. One
issue with this design is that with a large number of hosts
(e.g., 500) and a small poll interva (e.g., 5 seconds), the
request parsing can cause a high load on the Activation
Manager host. This potentia load is one reason that the
architecture separates the Activation Manager from the
Activation Producer.

If an Activation Manager or Activation Producer is
overloaded, then these components can be replicated.
Consumers will still be able to find the relevant
components by searching the Registry (described below).
Producers will either be pre-configured to find the right
Activation Producer/Manager or may aso search the
Registry.

4.4 Registry

Consumers who want to subscribe for monitoring data
can search the Registry for the appropriate instance of the
Activation Service. A typical search would be “find methe
Activation Service associated with MyApplication on
Cluster A or Cluster B”. The Registry will return one or
more Activation Service endpoints, and then the user can
proceed to subscribe for the data, activate the logging, or
both. The Registry could a so be used to locate other GMA
Producers with the same or related monitoring data, such
as amonitoring data archive.

Because there is nothing about the Registry that is
specific to the Activation Service, we have not yet
attempted an implementation. Existing software, such as
theMDS and R-GMA Registry, should serve admirably. It
should be noted that we also have not needed a Registry up
to this point, as all experiments have been run on a known
cluster with aknown associated Activation Service

5. Results

In this section, we present results from using the
Activation Service with an instrumented Athena
Framework running on multiple nodes on a cluster. We
focus on how the system scal es as we increase the number
of scheduled application instances (i.e.: number of cluster
nodes used) and the number of “consumers” subscribing to
the instrumentation data Both simple and relatively
complex subscriptions are employed, and a detailed (40
events/sec) logging level is activated. The next section
describes the experimental setup, and subsequent sections
present the results.

5.1 Experimental Setup

For the experiment, we ran Athena jobs on a queue in
the NERSC “PDSF” cluster (http://pdsf.nersc.gov) in
Oakland, CA, which has over 200 compute nodes
available at any given time. The NetLogger
instrumentation was sent to an Activation Producer at
Lawrence Berkeley National Lab (LBNL) (about 15 km
away), and the activation level was set and queried at an
Activation Manager on the same subnet. Subscriptions
(generated on a laptop) told the Activation Producer to
send monitoring data to two remote hosts, one at Oak
Ridge National Laboratory and one at the University of
Pittsburgh Supercomputing Center. Note that we used
remote hosts that had sufficient latency from the data
source to emulate a readlistic Grid environment. Five
streams of monitoring data were sent to each consumer
host. All hosts were 400 MHz or higher Pentium systems
running Linux; for more details see Appendix A.

In order to assess the performance of the entire system,
various components were instrumented with NetL ogger,
and these logs were sent to yet another host on the LBNL
subnet.

During each test, we measured the CPU load on the
cluster nodes and on the Activation Producer and
Activation Manager, and also the latency for each event
between the time it was generated and thetimeit arrived at
a Consume.

5.2 Filter Performance

To better understand the performance characteristics of
the Activation Service as a whole, we aso tested the
NetLogger “filter API” in isolation. Good performance
hereis crucia, asthe filtering event rate provides an upper
bound on thethroughput of the Activation Producer. There
are two independent variables which affect the event rate:
filter complexity, and the proportion of events which
‘pass’ the filter. The more complex the filter, the longer it
takes to evaluate each event. The more events which ‘pass
thefilter, the longer NetL ogger spends performing I/0O.

To evaluate the trade-off, we ran tests where the filter
complexity varied from 0 to 40 comparisons in steps of 4,
and the proportion of events that ‘passed’ varied from 0%
to 100% in steps of 10%. The events used were similar to
those in the Athena instrumentation. Results were logged
from a host with the same configuration as hostB.Ibl.gov,
to the remote consumer in Pittsburgh (host.psc.edu).

Measuring the throughput versus the two independent
variables produced the surface shown in Figure 5.

Figure 5: Filter Performance results

Clearly, the filter complexity is the main effect on
performance. Between the simplest and most complex
filters, there is roughly a factor of seven slow-down,
whereas the 100% pass filter is only about five to ten
percent slower than the 0% passfilter.

However, even at reasonably high complexity, the filter
performance is good. For example, when the filter has 20
expressions, on average it can write roughly 50,000 events
per second. Thisis still faster than the raw speed of many
less efficient logging libraries, such as log4j [7]. It should
be noted that because the host used was relatively slow
(400MHz) and filtering is CPU-intensive, most current
hardware would have even better performance.

5.3 Scalability

The primary scalability question that we wished to
address is. how many consumers and producers
(instrumented jobs) can be handled by a single Activation
Producer and Activation Manager? Secondarily, how does
the complexity of the subscription affect these quantities?
We measured the scaability of the system by comparing
the average time for an event to travel from the
instrumented job to the consumer as the number of
producers, consumers, and event rate increased.

In our tests, we “pre-subscribed” to the Activation
Producer with either a simple (4-comparison) or complex
(20-comparison) filter expression, for each of 10
consumers. Then we submitted roughly 5-minute jobs to
PDSF. We measured the event latencies for each event.
The median values are graphed in Figure 6.

Before analyzing these results, some fixed sources of
latency (particular to this implementation) should be
mentioned. First, the forwarding of events from each
instrumented job occurs in short bursts separated by 5
seconds. Second, each NetLogger Consumer and Producer
uses buffers with a 1-second time-out to increase
streaming efficiency. So, because each event is written,
forwarded, read, written, and read again (see Figure 5) --
the average fixed latency overhead is
((1+5+1+1+1)=+2)= 45 seconds.

(Note that NetLogger provides a “flush” option to
eliminate some of this latency, but that using it adds
considerable 1/0 overhead, thus decreasing overal
throughput.)

From 1 to 20 producers, the median event latency
varied between 4.7 and 6.2 seconds. Neither consumer
location or filter location seem to affect the values.
Therefore, it seems that these latencies are random
variation just above the fixed latency discussed above.
This means that a single Activation Producer scaled to 20
producers at 40 events per second with a complex filter to

Median Latency by Filter Type
‘ ‘ ‘ ‘ _ 0 20 40 60 80 100
complex simple |

200+

=

al

o
L

Latency (sec)

al
o
L

0 20 40 6‘0 8b 160
Number of Producers

Figure 6: Scalability Test Results

10 consumers, i.e. an aggregate output rate of 8,000 events
per second.

From 50 and 100 producers, we see linear increases in
latency for both complex and simple filtering. As
expected, the complex filter is slower than the simplefilter.
Again, consumer |ocation does not affect latency.

In summary, the results show that the Activation
Service scaled linearly with the product of the number of
consumers and the number of producers. Very complex
filters also added significantly to the load, however in all
cases the performance was excellent with 20 producers
and 10 consumers, and acceptable even with 100
producers and 10 consumers.

6. Conclusions

In this paper we described a Grid activation service
which is designed to address the problem of starting,
stopping, and changing the level of instrumentation data
from running Grid processes.We have shown that a single
Activation Producer node is efficient enough to handle an
aggregate throughput of 8,000 monitoring events per
second. In order to use the Activation Producer, the
NetLogger instrumentation in Athena did not need to be
modified at all, and only a single component (the
Activation Node) needed to be added to the submitted job.
The query language, although simple, provided sufficient
flexibility for current needs. Overall, we believe that the
Activation Services's flexible, distributed architecture will
prove to be a useful building block for a comprehensive
Grid monitoring and troubleshooting system.

7. Acknowledgments

This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing
Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy

Contract No. DE-ACO03-76SF00098 and by the Director,
Office of Science, High Energy Physics, U.S. Department
of Energy Contract No. DE-ACO03-76SF00098. See the
disclaimer at http://www-library.lbl.gov/disclaimer. Thisis
report no. LBNL-52991.

8. References

[11 Athena Framework. http://atlas.web.cern.ch/
Atlass GROUPS/SOFTWARE/OO/architec-
ture/General/index.html

[2] M. Burger, T. Kielmann, H. Bal. TOPOMON: A Monitor-
ing Tool for Grid Network Topology, International Con-
ference on Computational Science (2), pp. 558-567,
2002.

[3] R. Byrom et. a., R-GMA: A Relational Grid Information
and Monitoring System, Proceedings of the Cracow ‘02
Grid Workshop, January 2003. Web:
https://edms.cern.ch/file/368364/1/rgma.pdf

[4] T. Dewitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkist,
J. Subhlok and D. Sutherland, ReMoS: A resource moni-
toring system for network aware applications, Tech. Rep.
CMU-CS-97-194, School of Computer Science, Carnegie
Mellon University, December 1997

[5] W.Feng, J Hay, and M. Gardner, MAGNET: Monitor for
Application-Generated Network Traffic. 10th Interna-
tional Conference on Computer Communication and Net-
working. (IC3N'01), Scottsdale, Arizona, October 2001.

[6] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiol-
ogy of the Grid: An Open Grid Services Architecture for
Distributed Systems I ntegration. Open Grid Service Infra-
structure WG, Global Grid Forum, June 22, 2002.

[7] D. Gunter, B. Tierney, K. Jackson, J. Lee, M. Stoufer,
Dynamic Monitoring of High-Performance Distributed
Applications, Proceedings of the 11th |IEEE Symposium
on High Performance Distributed Computing, HPDC-11
11, July 2002.

[8] Hawkeye, A Monitoring and Management Tool for Dis-
tributed Systems. http://www.cs.wisc.edu/condor/hawk-
eye/

[9] J. Hollingsworth and B. Tierney, Instrumentation and
Monitoring, in The Grid, Volume 2. Morgan Kaufman,
2003.

[10] Kamady R. and B. Tierney, A Comparison of GSFTP
and RFIO on a WAN, Proceedings of Computers in High
Energy Physics 2001 (CHEP 2001).

[11] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R.
Irvin, K. Karavanic, K. Kunchithapadam and T. Newhall.
The Paradyn Parallel Performance Measurement Tool,
|EEE Computer 28, 11, pp.37-46 (November 1995). Spe-
cid issue on performance eval uation tools for parallel and
distributed computer systems.

[12] J. Pereira, F. Fabret, F Llirbat, D. Shasha. Efficient
Matching for Web-Based Publish/Subscribe Systems,
Conference on Cooperative Information Systems, pp.
162-173, 2000

[13] pyGMA, http://www-didc.Ibl.gov/pyGMA

[14] M. Rose, The Blocks Extensible Exchange Protocol Core,
RFC 3080, March 2001.

[15] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, M. Swany, A Grid Monitoring Service Architec-
ture, Globa Grid Forum White Paper,
http://www-didc.Ibl.gov/GridPerf/.

[16] B. Tierney and D. Gunter, NetLogger: A Toolkit for Dis-
tributed System Performance Tuning and Debugging,
LBNL Tech Report LBNL-51276

[17] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
D. Gunter, The NetLogger Methodology for High Per-
formance Distributed Systems Performance Analysis,
Proceeding of |EEE High Performance Distributed Com-
puting, July 1998, LBNL-42611.
http://www-didc.|bl.gov/NetL ogger/

[18] S Tuecke, K. Czakowski, |I. Foster, J. Frey, S. Graham,
C. Kesselman. Grid Service Specification. Open Grid
Service Infrastructure WG, Global Grid Forum, Draft 2,
7/17/2002. http://www.gridfo-
rum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridser-
vice-29_2003-04-05.pdf

[19] Widener, P, G. Eisenhauer, K. Schwan, and F. Busta-
mante, Open Metadata Formats: Efficient XML-Based
Communication for High Performance Computing, Clus-
ter Computing, 2002.

Appendix A: Experimental Host Details

The LBNL hosts were all 450 MHz Pentium 111 with
256MB of RAM, running RedHat Linux 7.2 (2.4.9 kernel)
and had Gigabit Ethernet external connectivity. The round
trip time between these machines and PDSF, as estimated
by ping, was roughly 3ms. The remote host at psc.edu was
a dual-processor 1GHz Pentium I11 with 892MB if RAM,
running RedHat Linux 7.2 (2.4.20 kernel), with
high-speed (~400Mb/s) connectivity to the LBNL hosts.
The round trip time between this machine and PDSF, as
estimated by ping, was roughly 70ms.

The PDSF cluster is heterogeneous, but most nodes

have one or two Pentium 111 processors between 600MHz
and 1GHz.

