

January 13th 2013 – TIP2013: Building a Science DMZ Jason Zurawski – Senior Research Engineer

Performance Measurement & Monitoring via perfSONAR

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

Current World View

"In any large system, there is always something broken."

Jon Postel

- Consider the technology:
 - 100G (and larger soon) Networking
 - Changing control landscape (e.g. SDN, be it OSCARS or OpenFlow, or something new)
 - Smarter applications and abstractions
- Consider the realities:
 - Heterogeneity in technologies
 - Mutli-domain operation
 - "old applications on new networks" as well as "new applications on old networks"

Why Worry About Network Performance?

- Most network design lends itself to the introduction of flaws:
 - Heterogeneous equipment
 - Cost factors heavily into design e.g. Get what you pay for
 - Design heavily favors protection and availability over performance
- Communication protocols are not advancing as fast as networks
 - TCP/IP is the king of the protocol stack
 - Guarantees reliable transfers
 - Adjusts to failures in the network
 - Adjusts speed to be fair for all
- User Expectations
 - "The Network is Slow/Broken" is this the response to almost any problem? Hardware? Software?
 - Empower users to be more informed/more helpful

Local testing will not find all problems

Soft Network Failures

- Soft failures are where basic connectivity functions, but high performance is not possible.
- TCP was intentionally designed to hide all transmission errors from the user:
 - "As long as the TCPs continue to function properly and the internet system does not become completely partitioned, no transmission errors will affect the users." (From IEN 129, RFC 716)
- Some soft failures only affect high bandwidth long RTT flows.
- Hard failures are easy to detect & fix
 - soft failures can lie hidden for years!
- One network problem can often mask others

Common Soft Failures

- Packet Loss
 - "Congestive"; the realities of a general purpose network
 - "Non-Congestive"; fixable, if you can find it
- Random Packet Loss
 - Bad/dirty fibers or connectors
 - Low light levels due to amps/interfaces failing
 - Duplex mismatch
- Small Queue Tail Drop
 - Switches not able to handle the long packet trains prevalent in long RTT sessions and local cross traffic at the same time
- Un-intentional Rate Limiting
 - Processor-based switching on routers due to faults, acl's, or misconfiguration
 - Security Devices
 - E.g.: 10X improvement by turning off Cisco Reflexive ACL

Sample Results: Finding/Fixing soft failures

Rebooted router with full route table

Gradual failure of optical line card

Say Hello to your Frienemy – The Firewall

- Designed to stop 'traffic'
 - Read this slowly a couple of times...
 - Performing a read of headers and/ or data. Matching signatures
- Contain small buffers
 - Concerned with protecting the network, not impacting your performance

- Will be a lot slower than the original wire speed
 - A "10G Firewall" may handle 1 flow close to 10G, doubtful that it can handle a couple.
- If firewall-like functionality is a must consider using router filters instead
 - Or per host firewall configurations ...

Performance Through the Firewall

- Blue = "Outbound", e.g. campus to remote location upload
- Green = "Inbound", e.g. download from remote location

Graph Key

Performance Outside of the Firewall

- Blue = "Outbound", e.g. campus to remote location upload
- Green = "Inbound", e.g. download from remote location
- Note This machine is in the *SAME RACK*, it just bypasses the firewall vs. that of the previous

Firewall Experiment Overview

- 2 Situations to simulate:
 - "Outbound" Bypassing Firewall
 - Firewall will normally not impact traffic leaving the domain. Will pass through device, but should not be inspected
 - "Inbound" Through Firewall
 - Statefull firewall process:
 - Inspect packet header
 - If on cleared list, send to output queue for switch/router processing
 - If not on cleared list, inspect and make decision
 - If cleared, send to switch/router processing.
 - If rejected, drop packet and blacklist interactions as needed.
 - Process slows down all traffic, even those that match a white list

Server & Client (Outbound)

- Run "nuttcp" server:
 - nuttcp -S -p 10200 -nofork
- Run "nuttcp" client:

retrans 8.38 msRTT

```
nuttcp -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu
   92.3750 \text{ MB} / 1.00 \text{ sec} = 774.3069 \text{ Mbps}
                                                            0 retrans
  111.8750 \text{ MB} / 1.00 \text{ sec} = 938.2879 \text{ Mbps}
                                                            0 retrans
  111.8750 \text{ MB} / 1.00 \text{ sec} = 938.3019 \text{ Mbps}
                                                            0 retrans
                                                            0 retrans
  111.7500 \text{ MB} / 1.00 \text{ sec} = 938.1606 \text{ Mbps}
  111.8750 MB /
                      1.00 \text{ sec} = 938.3198 \text{ Mbps}
                                                            0 retrans
  111.8750 \text{ MB} / 1.00 \text{ sec} = 938.2653 \text{ Mbps}
                                                            0 retrans
  111.8750 MB /
                      1.00 \text{ sec} = 938.1931 \text{ Mbps}
                                                            0 retrans
  111.9375 MB /
                      1.00 \text{ sec} = 938.4808 \text{ Mbps}
                                                            0 retrans
  111.6875 MB /
                      1.00 \text{ sec} = 937.6941 \text{ Mbps}
                                                            0 retrans
  111.8750 \text{ MB} / 1.00 \text{ sec} = 938.3610 \text{ Mbps}
                                                            0 retrans
```


1107.9867 MB / 10.13 sec = 917.2914 Mbps 13 %TX 11 %RX 0

INTERNET

Server & Client (Inbound)

- Run "nuttcp" server:
 - nuttcp -S -p 10200 -nofork
- Run "nuttcp" client:

```
nuttcp -r -T 10 -i 1 -p 10200 bwctl.newy.net.internet2.edu
    4.5625 \text{ MB} / 1.00 \text{ sec} =
                                     38.1995 Mbps
                                                        13 retrans
    4.8750 \text{ MB} / 1.00 \text{ sec} = 40.8956 \text{ Mbps} 4 \text{ retrans}
    4.8750 MB / 1.00 sec = 40.8954 Mbps 6 retrans
    6.4375 \text{ MB} / 1.00 \text{ sec} = 54.0024 \text{ Mbps}
                                                         9 retrans
    5.7500 \text{ MB} / 1.00 \text{ sec} = 48.2310 \text{ Mbps}
                                                         8 retrans
    5.8750 \text{ MB} / 1.00 \text{ sec} = 49.2880 \text{ Mbps}
                                                         5 retrans
    6.3125 \text{ MB} / 1.00 \text{ sec} = 52.9006 \text{ Mbps}
                                                         3 retrans
    5.3125 MB /
                     1.00 \text{ sec} =
                                     44.5653 Mbps
                                                          7 retrans
                     1.00 \text{ sec} =
    4.3125 MB /
                                     36.2108 Mbps
                                                          7 retrans
    5.1875 \text{ MB} / 1.00 \text{ sec} =
                                     43.5186 Mbps
                                                         8 retrans
   53.7519 \text{ MB} / 10.07 \text{ sec} = 44.7577 \text{ Mbps} 0 %TX 1 %RX 70
retrans 8.29 msRTT
                                                                  INTERNET
```


I Spy ...

- Start "tcpdump" on interface (note isolate traffic to server's IP Address/Port as needed):
 - sudo tcpdump -i eth1 -w nuttcp1.dmp net 64.57.17.66
 - tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 96 bytes
 - 974685 packets captured
 - 978481 packets received by filter
 - 3795 packets dropped by kernel
- Perform "tcptrace" analyses:

```
tcptrace -G nuttcp1.dmp
```

- 1 arg remaining, starting with 'nuttcp1.dmp'
- Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004
- 974685 packets seen, 974685 TCP packets traced
- elapsed wallclock time: 0:00:33.083618, 29461 pkts/sec analyzed
- trace file elapsed time: 0:00:10.215806
- TCP connection info:
- 1: perfsonar.hep.brown.edu:47617 nms rthr2.newy32aoa.net.internet2.edu:5000 (a2b) 18> 17< (complete)</pre>
 - 2: perfsonar.hep.brown.edu:60349 nmsrthr2.newy32aoa.net.internet2.edu:10200 (c2d) 845988> 128662< (complete) 15-2/8/13, © 2012 Internet2 - zurawski@internet2.edu

Plotting (Outbound) - Complete

Plotting (Outbound) - Zoom

17 - 2/8/13, © 2012 Internet2 - zurawski@internet2.edu

INTERNET

Plotting (Inbound) - Complete

zurawski@internet2.edu

Plotting (Inbound) – OOP/Retransmits

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

TCP

- Transmission Control Protocol
 - One of the core protocols of the Internet Protocol Suite (along with IP [Internet Protocol])
 - TCP doesn't relay when things are going wrong via the OS Kernel (e.g. a lost packet is re-transmitted without any knowledge to the application).
 - Loss is actually "<u>required</u>" for TCP to work, this is how it is able to enforce fairness (e.g. Loss means congestion, therefor back off).
 - No distinction between congestive and non-congestive losses
 - Not optimized for modern networks (LFN) by default.
 Latency has a pretty profound effect on performance in the control of the cont

TCP

- TCP Measurements (from some of the tools we use):
 - Always includes the end system
 - Are sometimes called "memory-to-memory" tests since they don't involve a spinning disk
 - Set expectations for well coded application
- There are limits of what we can measure
 - TCP *hides* details
 - In hiding the details it can obscure what is causing errors
 - Many things can limit TCP throughput
 - Loss
 - Congestion
 - Buffer Starvation
 - Out of order delivery

TCP – Quick Overview

- General Operational Pattern
 - Sender buffers up data to send into segments (respect the MSS) and numbers each
 - The 'window' is established and packets are sent in order from the window
 - The flow of data and ACK packets will dictate the overall speed of TCP for the length of the transfer
 - TCP starts fast, until it can establish the available resources on the network.
 - The idea is to grow the window until a loss is observed
 - This is the signal to the algorithm that it must limit the window for the time being, it can slowly build it back up

TCP – Quick Overview (Slow Start)

TCP – Quick Overview

- General Operational Pattern cont
 - Receiver will acknowledge packets as they arrive
 - ACK Each (old style)
 - Cumulative ACK ("I have seen everything up to this segment"
 - Selective ACK (sent to combat a complete retransmit of the window)
 - TCP relies on loss to a certain extent it will adjust it's behavior after each loss
 - Congestive (e.g. reaching network limitation, or due to traffic)
 - Non-congestive (due to actual problems in the network)
 - Congestion avoidance stage follows slow start, window will remain a certain size and data rates will increase/decrease based on loss in the network
 - Congestion Control algorithms modify the behavior over time
 - Control how large the window may grow
 - Control how fast to recover from any loss

TCP Performance: Parallel Streams

- Parallel streams can help in some situations
 - TCP attempts to be "fair" and conservative
 - Sensitive to loss, but more streams hedge bet
 - Circumventing fairness mechanism
 - 1 stream vs. n background: you get 1/(n+1)
 - X streams vs. n background: you get x/(n+x)
 - Example: 2 background, 1 stream: 1/3 = 33% of available resources
 - Example: 2 background, 8 streams: 8/10 = 80% of available resources
- There is a point of diminishing returns
- To get full TCP performance, the TCP window needs to be large enough to accommodate the <u>Bandwidth Delay Product</u>

Stumbling Blocks – Packet Loss

- Bandwidth Delay Product
 - The amount of "in flight" data allowed for a TCP connection
 - BDP = bandwidth * round trip time
 - Example: 1Gb/s cross country, ~100ms
 - 1,000,000,000 b/s * .1 s = 100,000,000 bits
 - 100,000,000 / 8 = 12,500,000 bytes
 - 12,500,000 bytes / (1024*1024) ~ 12MB
- Major OSs default to a base of 64k.
 - For those playing at home, the maximum throughput with a TCP window of 64 KByte for RTTs:
 - 10ms = 50Mbps
 - 25ms = 20Mbps
 - 50ms = 10Mbps
 - 75ms = 6.67Mbps
 - 100ms = 5Mbps
 - Autotuning does help by growing the window when needed...

A small about of packet loss makes a huge difference in TCP performance

- A Nagios alert based on our regular throughput testing between one site and ESnet core alerted us to poor performance on high latency paths
- No errors or drops reported by routers on either side of problem link
 - only perfSONAR bwctl tests caught this problem
- Using packet filter counters, we saw 0.0046% loss in one direction
 - 1 packets out of 22000 packets
- Performance impact of this: (outbound/inbound)
 - To/from test host 1 ms RTT : 7.3 Gbps out / 9.8 Gbps in
 - To/from test host 11 ms RTT: 1 Gbps out / 9.5 Gbps in
 - To/from test host 51ms RTT: 122 Mbps out / 7 Gbps in
 - To/from test host 88 ms RTT: 60 Mbps out / 5 Gbps in
 - More than 80 times slower!

The Metrics

- Use the correct tool for the Job
 - To determine the correct tool, maybe we need to start with what we want to accomplish ...
- What do we care about measuring?
 - Latency (Round Trip and One Way)
 - Jitter (Delay variation)
 - Packet Loss, Duplication, out-of-orderness (transport layer)
 - Interface Utilization/Discards/Errors (network layer)
 - Achievable Bandwidth (e.g. "Throughput")
 - Traveled Route
 - MTU Feedback

Latency

- Round Trip (e.g. source to destination, and back)
 - Hard to isolate the direction of a problem
 - Congestion and queuing can be masked in the final measurement
 - Can be done with a single 'beacon' (e.g. using ICMP responses)
- One Way (e.g. measure one direction of a transfer only)
 - Direction of a problem is implicit
 - Detects asymmetric behavior
 - See congestion or queuing in one direction first (normal behavior)
 - Requires '2 Ends' to measure properly

Jitter

- To Quote Wikipedia: "undesired deviation from true periodicity"
- Computer people usually avoid the classic definition and (term) and use "packet delay variation" (PDV) instead
- In layman's terms:
 - Packet trains should be well spaced to aid in processing
 - Bursts can cause queuing on devices (followed by periods of inactivity)
 - Jitter is a calculation of this variation in distances between packets. High jitter indicates things are consistently not well spaced

Jitter - Example

- Processing Delay: Time to process a packet
- Queuing Delay: Time spent in ingress/egress queues to device
- Transmission Delay: Time needed to put the packet on the wire
- Propagation Delay: Time needed to travel on the wire

KanREN Monitoring – When Links Die

Throughput? Bandwidth?

- The term "throughput" is vague
 - Capacity: link speed
 - Narrow Link: link with the lowest capacity along a path
 - Capacity of the end-to-end path = capacity of the narrow link
 - Utilized bandwidth: current traffic load
 - Available bandwidth: capacity utilized bandwidth
 - Tight Link: link with the least available bandwidth in a path
 - Achievable bandwidth: includes protocol and host issues

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

Addressing the Problem: perfSONAR

- perfSONAR an open, web-services-based framework for:
 - running network tests
 - collecting and publishing measurement results
- ESnet and Internet2 are:
 - Deploying the framework across the science community
 - Encouraging people to deploy 'known good' measurement points near domain boundaries
 - "known good" = hosts that are well configured, enough memory and CPU to drive the network, proper TCP tuning, clean path, etc.
 - Using the framework to find and correct soft network failures.

US Deployment

Internet2

- 4 Machines in each PoP on the current network (2 x Throughput Test Machine, 1 User Test Machine, 1 Latency Test Machine)
- Plans for single server in all PoPs on new network
- Internal Testing (http://owamp.net.internet2.edu), and 100s of community initiated tests per week
- Central Netflow/SNMP Monitoring
- Assistance available <u>rs@internet2.edu</u>

ESnet

- 2 Machines in each PoP (Latency and Bandwidth Testing)
- Machines at Customer sites (e.g. federal labs and other scientific points of interest)
- Full mesh of testing (http://stats.es.net)
- Assistance available trouble@es.net

perfSONAR Overview - Explanation

- "Buzzwords" have a tendency to lose meaning when overused
 - What does 'perfSONAR' mean?
- Basic idea: Network Performance Matters
 - Scientist moving data from a telescope to a lab
 - Performers showing audio/video across the world
- "Inter" Domain
 - Solved science every admin knows what goes on locally
- "Intra" Domain
 - Demarcation between networks houses a handoff that is may not be directly watched
- "Multi" Domain
 - The new normal your closest collaborator is around the world

perfSONAR Overview – How To Use

- Deployments mean:
 - Instrumentation on a network
 - The ability for a user at location A to run tests to Z, and things "in the middle"
 - Toolkit deployment is the most important step for debugging, and enabling science
- Debugging:
 - End to end test
 - Divide and Conquer
 - Isolate good vs bad (e.g. who to 'blame')

Global Reach of perfSONAR Monitoring

perfSONAR Architecture Overview

Data Services

Measurement Points

Measurement Archives

Transformations

Infrastructure

Information Services

Service Lookup

Topology

Service Configuration

Auth(n/z) Services

Analysis/Visualization

User GUIs

Web Pages

NOC Alarms

perfSONAR Services

- PS-Toolkit includes these measurement tools:
 - BWCTL: network throughput
 - OWAMP: network loss, delay, and jitter
 - PINGER: network loss and delay
- Measurement Archives (data publication)
 - SNMP MA Interface Data
 - pSB MA -- Scheduled bandwidth and latency data
- Lookup Service
 - gLS Global lookup service used to find services
 - hLS Home lookup service for registering local perfSONAR metadata
- PS-Toolkit includes these Troubleshooting Tools
 - NDT (TCP analysis, duplex mismatch, etc.)
 - NPAD (TCP analysis, router queuing analysis, etc)

perfSONAR-PS Utility - Diagnostics

- The pS Performance Toolkit was designed for diagnostic use and regular monitoring
 - All tools preconfigured
 - Minimal installation requirements
 - Can deploy multiple instances for short periods of time in a domain

perfSONAR-PS Utility - Monitoring

- Regular monitoring is an important design consideration for perfSONAR-PS tools
 - perfSONAR-BUOY and PingER provide scheduling infrastructure to create regular latency and bandwidth tests
 - The SNMP MA integrates with COTS SNMP monitoring solutions
- The pSPT is capable of organizing and visualizing regularly scheduled tests
- NAGIOS can be integrated with perfSONAR-PS tools to facilitate alerting to potential network performance degradation

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

Common Use Case

- Trouble ticket comes in:
- "I'm getting terrible performance from site A to site B"
- If there is a perfSONAR node at each site border:
 - Run tests between perfSONAR nodes
 - performance is often clean
 - Run tests from end hosts to perfSONAR host at site border
 - Often find packet loss (using owamp tool)
 - If not, problem is often the host tuning or the disk
- If there is not a perfSONAR node at each site border
 - Try to get one deployed
 - Run tests to other nearby perfSONAR nodes

perfSONAR Overview – Why To Use

- The following highlights a use of perfSONAR on Internet2 on 10/4/2012
 - Latency Monitoring picked up application layer loss and increased jitter on a series of links
 - Throughput Monitoring simulated a drop in available bandwidth on the same links
 - Netflow Monitoring found an increase in discarded packets
 - SNMP Monitoring picked up high utilization
- Translation:
 - High Use = Potential drops in service availability
 - Required intervention to increase capacity and balance traffic
 - Measurements picked up the underlying "reason" due to several metrics

perfSONAR Overview – Why To Use

perfSONAR Overview - Why To Use

perfSONAR Overview - Why To Use

perfSONAR Overview - Why To Use

Sample Results: Throughput tests

Heavily used path: probe traffic is "scavenger service"

Asymmetric Results: different TCP stacks?

REDDnet Use Case – Host Tuning

Host Configuration – spot when the TCP settings were tweaked...

- N.B. Example Taken from REDDnet (UMich to TACC, using BWCTL measurement)
- Host Tuning: http://fasterdata.es.net/fasterdata/host-tuning/linux/

Troubleshooting Example: Bulk Data Transfer between DOE SC Centers

- Users were having problems moving data between supercomputer centers, NERSC and ORNL
 - One user was: "waiting more than an entire workday for a 33 GB input file" (this should have taken < 15 min)
- perfSONAR-PS measurement tools were installed
 - Regularly scheduled measurements were started
- Numerous choke points were identified & corrected
 - Router tuning, host tuning, cluster file system tuning
- Dedicated wide-area transfer nodes were setup
 - Now moving 40 TB in less than 3 days

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

perfSONAR-PS Software

- perfSONAR-PS is an open source implementation of the perfSONAR measurement infrastructure and protocols
 - written in the perl programming language
- http://software.internet2.edu/pS-Performance Toolkit/
- All products are available as RPMs.
- The perfSONAR-PS consortium supports CentOS (version 5 and 6).
- RPMs are compiled for i386 and x86 64
- Functionality on other platforms and architectures is possible, but not supported.
 - Should work: Red Hat Enterprise Linux and Scientific Linux (v5)
 - Harder, but possible:
 - Fedora Linux, SuSE, Debian Variants

Deploying perfSONAR-PS Tools In Under 30 Minutes

- There are two easy ways to deploy a perfSONAR-PS host
- "Level 1" perfSONAR-PS install:
 - Build a Linux machine as you normally would (configure TCP properly! See: http://fasterdata.es.net/TCP-tuning/)
 - Go through the Level 1 HOWTO
 - http://fasterdata.es.net/ps level1 howto.html
 - Includes bwctl.limits file to restrict to R&E networks only
 - Simple, fewer features, runs on a standard Linux build
- Use the perfSONAR-PS Performance Toolkit netinstall CD
 - Most of the configuration via Web GUI
 - http://psps.perfsonar.net/toolkit/
 - Includes more features (perfSONAR level 3)

Why is Placement Important

- Placement of a tester should depend on two things:
 - Where a tester will have the most positive of impacts for find/ preventing problems
 - Where space/resources are available
- We want to find certain sets of problems:
 - Edge of your network to edge of your upstream provider
 - E.g. University to Regional
 - Regional to Backbone
 - Core of your network to Edge of your network and upstream providers
 - Campus core facility to demarcation point
 - Campus core to ISP
 - Location of important devices to remote facilities and points in between
 - Data centers to consumers of said data (e.g. campus to campus)
 - Data centers to ISP

Constructing Zones

- Networks are large and complex, but can be broken into a couple of common components:
 - Main Distribution Frame (MDF) where the WAN connectivity will land.
 - Intermediate Distribution Frames (IDF) in other buildings (major components on a LAN)
 - The Network "core" which may be data center that houses key components (Mail, DNS, HTTP, Telephony)
 - Population centers (Dorms, Offices, Labs, Data Centers)

Sample Site Deployment

Importance of Regular Testing

- You can't wait for users to report problems and then fix them (soft failures can go unreported for years!)
- Things just break sometimes
 - Failing optics
 - Somebody messed around in a patch panel and kinked a fiber
 - Hardware goes bad
- Problems that get fixed have a way of coming back
 - System defaults come back after hardware/software upgrades
 - New employees may not know why the previous employee set things up a certain way and back out fixes
- Important to continually collect, archive, and alert on active throughput test results

Developing a Measurement Plan

- What are you going to measure?
 - Achievable bandwidth
 - 2-3 regional destinations
 - 4-8 important collaborators
 - 4-10 times per day to each destination
 - 20 second tests within a region, longer across the Atlantic or Pacific
 - Loss/Availability/Latency
 - OWAMP: ~10 collaborators over diverse paths
 - PingER: use to monitor paths to collaborators who don't support owamp
 - Interface Utilization & Errors
- What are you going to do with the results?
 - NAGIOS Alerts
 - Reports to user community
 - Post to Website

Sample tool: Atlas perfSONAR Dashboard

Status of perfSONAR Throughput Matrix

-	0	1	2	3	4	5	6	7	8
0:atlas-npt2.bu.edu	-	OK OK	OK OK	OK OK	OK OK	OK OK	UNKNOWN OK	OK OK	OK OK
1:lhcmon.bnl.gov	OK OK	-	OK OK	OK OK	OK OK	OK OK	OK OK	OK UNKNOWN	OK OK
2:ps2.ochep.ou.edu	OK OK	ok VR	-	OK OK	OK OK	OK OK	OK UNKNOWN	OK OK	ок ок
3:psmsu02.aglt2.org	ок ок	ок ок	ок ок	-	ок ок	ок ок	UNKNOWN UNKNOWN	ок ок	ок ок
4:netmon2.atlas- swt2.org	OK UNKNOWN	UNKNOWN OK	ок ок	ок ок	-	OK UNKNOWN	OK UNKNOWN	ок ок	OK OK
5:iut2-net2.iu.edu	ок ок	ок ок	ок ок	ок ок	ок ок	-	ок ок	ок ок	ок ок
6:psnr- bw01.slac.stanford.edu	OK UNKNOWN	ок ок	UNKNOWN OK	UNKNOWN UNKNOWN	UNKNOWN UNKNOWN	ок ок	-	ок ок	UNKNOWN UNKNOWN
7:uct2- net2.uchicago.edu	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK	OK OK	-	ок ок
8:psum02.aglt2.org	ок ок	ок ок	ок ок	ок ок	ок ок	ок ок	UNKNOWN UNKNOWN	ок ок	-

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

Host Considerations

- http://psps.perfsonar.net/toolkit/hardware.html
- Dedicated perfSONAR hardware is best
- Other applications will perturb results
- Separate hosts for throughput tests and latency/loss tests is preferred
 - Throughput tests can cause increased latency and loss
 - Latency tests on a throughput host are still useful however
- 1Gbps vs 10Gbps testers
 - There are a number of problem that only show up at speeds above 1Gbps
- Virtual Machines do not work well for perfSONAR hosts
 - clock sync issues
 - throughput is reduced significantly for 10G hosts
 - caveat: this has not been tested recently, and VM technology and motherboard technology has come a long way

The Basics

- Choosing hardware for a measurement node is not a complicated process
- Some basic guidelines:
 - Bare Metal (more on this later)
 - x86 Architecture (64Bit is not natively supported in the software, but it can be emulated)
 - "Modern" limits for RAM, CPU Speed, Main Storage
 - E.g. it doesn't need to be brand new, but it should be no older than 8 years (e.g. we have evidence of old Pentium II desktop machines working, but not working well ⊕)
 - Recycling is fine, unless you have money to burn on a new device (and who doesn't!)

Use Cases - Latency

- A 10G card isn't really need, 1G is recommended (100M) would be ok as well, just be sure the driver is recent)
 - Be careful with TCP offload on some NICs, it can introduce OOP
- CPU load is minimal, single core single CPU is fine. Doesn't need to be a whole lot of MHz/GHz
 - Multi-core/processor systems can sometimes introduce jitter on their own if interpret processing is not handled efficiently
- RAM is also minimal, enough to support a modern Linux distro (1G should be sufficient)
- Main Memory is where you do need some power. OWAMP Regular testing data can build up over time. Several G a month depending on who you are testing against.
 - This can be cleaned out if you are space constrained

Use Cases - Bandwidth

- 1G is a common use case, but if you can do 10G aim for this
 - Same caveat about drivers there are some nasty kernel/driver interactions stories out there ...
- CPU should be beefy, you do want a pretty good pentium/xeon on your side. Mutli-cores/ processors are not a requirement
- RAM should be consistent with the CPU, 2G+ is good
- The main memory requirements are not as great as the latency machine, 100G is more than enough.

Good Choices

- Modern Server Class Hardware
 - Internet2 uses Dell Power Edge 1950s (from 2005!)
 and these are still kicking
 - I have been testing some Dell R310s lately. Pretty cost effective (EDU pricing of around \$1.5k if you add on a 10G card and some LR optics)
 - Supermicro makes a nice 1U/Half Size machine with an Atom processor. These are excellent for Latency testing (don't push it with the bandwidth though

Good Choices

Desktop Towers

- I don't test these often, most are probably ok for temporary use cases.
- "Energy Saving" models are a little suspect, these could reduce CPU power and effect the clock
- Laptops
 - I wouldn't recommend this for longer term use, but for diagnostics they are mobile and effective

Poor Choices

- **Virtual Machines**
 - Our largest concern is the clock
 - A VM gets its time updates from the Hyporvisor
 - The HV gets updates via the system (hopefully it is running NTP)
 - If the VM is also running NTP, it will attempt to keep the clock stable, but the 'backdoor' updates to the VM clock from the HV will skip time forward/backward - confusing NTP
 - Think about what happens if the VM is swapped out ...
 - Situations where a VM is ok:
 - NDT/NPAD Beacon
 - 1G bandwidth testing
 - SNMP Collection, NAGIOS Operation
 - Situations where it is not:
 - **OWAMP** measurements

Poor Choices

 1G host plugged into 100M Switch ... Pick out where we moved to a 1G Switch ...

Poor Choices

- Mac Mini and similar micro-machines
 - Largest concern here is that the 1G NIC is on the motherboard, and competes for BUS resources.
 - This introduces jitter in latency measurements
 - Reduces throughput tests
 - Power management can be funky too
- Desktops/Laptops (for permanent placement)
 - Power management is a concern for aforementioned reasons
 - Onboard NICs are common here as well

Outline

- Problem Definition & Motivation
- TCP & Metrics
- perfSONAR overview
- Case studies
- Site deployment recommendations
- perfSONAR host recommendations
- Wrap Up

perfSONAR Summary

- Soft failures are everywhere
- We all need to look for them, and not wait for users to complain
- perfSONAR is MUCH more useful when its on every segment of the end-to-end path
- Ideally all networks and high BW end sites to deploy at least a "level 1" host
- 10G test hosts are needed to troubleshoot 10G problems
- perfSONAR is MUCH more useful when its open
- Locking it down behind firewalls/ACLs defeats the purpose

perfSONAR-PS Community

- perfSONAR-PS is working to build a strong user community to support the use and development of the software.
- perfSONAR-PS Mailing Lists
 - Announcement List:
 https://mail.internet2.edu/wws/subrequest/perfsonar-ps-announce
 - Users List:
 https://mail.internet2.edu/wws/subrequest/performance-node-users
 - Announcement List:
 https://mail.internet2.edu/wws/subrequest/performance-node-announce

The Way Forward - Training

- Network Performance Workshop
 - http://www.internet2.edu/workshops/npw/
 - 15 over the last 2 years
 - 7 Affiliated with Internet2 events, 8 privately sponsored
- Structure
 - 1 or 2 Day training
 - Learn about the tools (perfSONAR), but more importantly how to use them in a campus/regional setting to solve real problems
- Contact Jason
 (<u>zurawski@internet2.edu</u>) if this
 sounds like something you want to
 host at your campus/regional

Performance Measurement & Monitoring via perfSONAR

January 13th 2013 – TIP2013: Building a Science DMZ Jason Zurawski – Senior Research Engineer

For more information, visit http://psps.perfsonar.net